Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions

[1]  V. Alves,et al.  Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature , 2019, International journal of food science.

[2]  K R Niness,et al.  Inulin and oligofructose: what are they? , 1999, The Journal of nutrition.

[3]  S. V. Borges,et al.  Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. , 2016, Carbohydrate polymers.

[4]  K. J. Park,et al.  Influence of Process Conditions on the Physicochemical Properties of Pequi Powder Produced by Spray Drying , 2013 .

[5]  A. Rao,et al.  Carotenoids and human health. , 2007, Pharmacological research.

[6]  M. Sousa-Gallagher,et al.  Novel Intact Bitter Cassava: Sustainable Development and Desirability Optimisation of Packaging Films , 2016, Food and Bioprocess Technology.

[7]  A. Torbica,et al.  The influence of concentration and temperature on the viscoelastic properties of tomato pomace dispersions , 2016 .

[8]  G. Reineccius The Spray Drying of Food Flavors , 2004 .

[9]  C. Fávaro-Trindade,et al.  Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules , 2012 .

[10]  Montaña Cámara,et al.  Nutritional characterization of tomato fiber as a useful ingredient for food industry , 2010 .

[11]  K. Kaur,et al.  Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate , 2018, Journal of Food Science and Technology.

[12]  P. Roach,et al.  Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. , 2010 .

[13]  S. Murali,et al.  Encapsulation of black carrot juice using spray and freeze drying , 2015, Food science and technology international = Ciencia y tecnologia de los alimentos internacional.

[14]  Ayhan Topuz,et al.  Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties , 2017 .

[15]  R. V. Tonon,et al.  Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying , 2008 .

[16]  R. Kailappan,et al.  MICROENCAPSULATION OF TURMERIC OLEORESIN BY SPRAY DRYING AND IN VITRO RELEASE STUDIES OF MICROCAPSULES , 2015 .

[17]  M. Viuda‐Martos,et al.  Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review , 2014, Critical reviews in food science and nutrition.

[18]  S. V. Borges,et al.  Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. , 2014, Carbohydrate polymers.

[19]  A. Mercadante,et al.  Encapsulation of lycopene using spray-drying and molecular inclusion processes , 2007 .

[20]  S. V. Borges,et al.  Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil , 2014 .

[21]  W. Ambroziak,et al.  Structural, physicochemical and biological properties of spray-dried wine powders. , 2017, Food chemistry.

[22]  E. Tsotsas,et al.  Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules , 2017 .

[23]  Zakaria,et al.  Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide , 2012 .

[24]  P. Roach,et al.  Microencapsulation of Gac oil: Optimisation of spray drying conditions using response surface methodology , 2014 .

[25]  V. Orsat,et al.  Spray Drying for the Production of Nutraceutical Ingredients—A Review , 2011, Food and Bioprocess Technology.

[26]  Laura Marcela,et al.  Secado por aspersión de mieles de caña como base para la obtención de productos instantáneos de panela , 2020 .

[27]  Vondel Reyes,et al.  Microencapsulation of ginger (Zingiber officinale) extract by spray drying technology , 2016 .

[28]  M. Azizi,et al.  Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. , 2015, Carbohydrate polymers.

[29]  T. Shibamoto,et al.  Bioactivity of essential oils and their volatile aroma components: Review , 2012 .

[30]  M. Nickerson,et al.  Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying , 2018, Journal of Food Science and Technology.

[31]  S. Quek,et al.  The physicochemical properties of spray-dried watermelon powders , 2007 .

[32]  C. C. Ferrari,et al.  Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder , 2012 .

[33]  I. Delgadillo,et al.  Inulin potential for encapsulation and controlled delivery of Oregano essential oil , 2013 .

[34]  A. Goula,et al.  A New Technique for Spray-Dried Encapsulation of Lycopene , 2012 .

[35]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[36]  A. Torbica,et al.  Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace , 2016 .

[37]  P. Vos,et al.  Encapsulation for preservation of functionality and targeted delivery of bioactive food components , 2010 .

[38]  M. Reis,et al.  Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis. , 2012, Bioresource technology.

[39]  Bence Nagy,et al.  Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products , 2007 .

[40]  F. Pires,et al.  Optimization of spray drying process parameters for tucupi powder using the response surface methodology , 2017, Journal of Food Science and Technology.