CoB6 monolayer: A robust two-dimensional ferromagnet

Two-dimensional (2D) magnetic materials are essential to developing high-performance spintronic devices. Recent experimental discoveries of several atomic thin 2D ferromagnetic materials have stimulated great interest in further exploring this fascinating class of materials. Here, combining an advanced crystal structure search method and extensive first-principles energetic and dynamic calculations, we have identified a planar ${\mathrm{CoB}}_{6}$ monolayer as a stable 2D ferromagnet. We show that the ferromagnetic ground state of the ${\mathrm{CoB}}_{6}$ monolayer remains robust in the ambient environment, and the magnetic stability and moment can be remarkably enhanced and tuned by external strain. Moreover, we propose feasible synthesis routes for the the newly predicted ${\mathrm{CoB}}_{6}$ monolayer, either by Co atom adsorption on the recently proposed ${\ensuremath{\delta}}_{4}$ boron sheet or by direct chemical growth. The present results establish a fundamental material and physics basis for synthesis and characterization of the ${\mathrm{CoB}}_{6}$ monolayer among the emerging 2D ferromagnetic materials.

[1]  M. Amsler,et al.  Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO2 , 2018, Physical Review B.

[2]  Cheng Lu,et al.  High-Pressure Evolution of Crystal Bonding Structures and Properties of FeOOH. , 2018, The journal of physical chemistry letters.

[3]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[4]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[5]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[6]  Kehui Wu,et al.  Experimental realization of honeycomb borophene. , 2018, Science bulletin.

[7]  Michael A. McGuire,et al.  Ligand-field helical luminescence in a 2D ferromagnetic insulator , 2017, 1710.05550.

[8]  Tian Jian,et al.  From planar boron clusters to borophenes and metalloborophenes , 2017 .

[9]  Yanming Ma,et al.  Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides. , 2017, Physical review letters.

[10]  Wei Huang,et al.  Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations , 2017 .

[11]  Zhen Zhou,et al.  MnBx monolayers with quasi-planar hypercoordinate Mn atoms and unique magnetic and mechanical properties , 2017 .

[12]  Yu-Jun Zhao,et al.  Stable sandwich structures of two-dimensional iron borides FeBx alloy: a first-principles calculation , 2017 .

[13]  Liang Dong,et al.  Tunable Magnetism and Transport Properties in Nitride MXenes. , 2017, ACS nano.

[14]  Jinlong Yang,et al.  Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. , 2017, Nano letters.

[15]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[16]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[17]  Yanming Ma,et al.  Structural metatransition of energetically tangled crystalline phases. , 2017, Physical chemistry chemical physics : PCCP.

[18]  Voltage-gated spin-filtering properties and global minimum of planar MnB6, and half-metallicity and room-temperature ferromagnetism of its oxide sheet , 2016 .

[19]  José M. Gómez-Rodríguez,et al.  Atomic-scale control of graphene magnetism by using hydrogen atoms , 2016, Science.

[20]  Haijun Zhang,et al.  FeB6 Monolayers: The Graphene-like Material with Hypercoordinate Transition Metal. , 2016, Journal of the American Chemical Society.

[21]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[22]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[23]  Yanming Ma,et al.  Anomalous Stress Response of Ultrahard WB_{n} Compounds. , 2015, Physical review letters.

[24]  Lai‐Sheng Wang,et al.  Cobalt-centred boron molecular drums with the highest coordination number in the CoB16− cluster , 2015, Nature Communications.

[25]  G. Steele,et al.  Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate , 2015, 1509.09118.

[26]  E. Ganz,et al.  Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. , 2015, Journal of the American Chemical Society.

[27]  Yanchao Wang,et al.  Superhard BC(3) in cubic diamond structure. , 2015, Physical review letters.

[28]  Lizhi Zhang,et al.  Prediction of a Dirac state in monolayer TiB2 , 2014 .

[29]  Zhongfang Chen,et al.  Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. , 2014, Angewandte Chemie.

[30]  Yanming Ma,et al.  Xenon Reacts with Iron at the Conditions of the Earth's Core , 2013, 1309.2169.

[31]  Yanming Ma,et al.  Global structural optimization of tungsten borides. , 2013, Physical review letters.

[32]  Yanming Ma,et al.  Unraveling Convoluted Structural Transitions in SnTe at High Pressure , 2013 .

[33]  Alexander I Boldyrev,et al.  Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. , 2013, Accounts of chemical research.

[34]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[35]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[36]  Wanlin Guo,et al.  Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. , 2012, Journal of the American Chemical Society.

[37]  Xin Sun,et al.  Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. , 2012, ACS nano.

[38]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[39]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[40]  Lai‐Sheng Wang,et al.  Transition-metal-centered nine-membered boron rings: MⓒB9 and MⓒB9(-) (M = Rh, Ir). , 2012, Journal of the American Chemical Society.

[41]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[42]  Alexander I Boldyrev,et al.  Aromatic metal-centered monocyclic boron rings: Co©B8- and Ru©B9-. , 2011, Angewandte Chemie.

[43]  Ying Dai,et al.  Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene. , 2011, Nanoscale.

[44]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[45]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[46]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[47]  Qiang Sun,et al.  Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine , 2009, 0910.5287.

[48]  Hui Tang,et al.  Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures , 2009 .

[49]  Y. Kawazoe,et al.  Ferromagnetism in semihydrogenated graphene sheet. , 2009, Nano letters.

[50]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[51]  L. Reining,et al.  Ab initio GW many-body effects in graphene. , 2008, Physical review letters.

[52]  Zhonghua Zhu,et al.  Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations , 2008 .

[53]  N. Peres,et al.  Localized magnetic states in graphene. , 2008, Physical review letters.

[54]  S. Louie,et al.  Electric field effects on spin transport in defective metallic carbon nanotubes. , 2007, Nano letters.

[55]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[56]  Richard L. Martin,et al.  Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional , 2006 .

[57]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[58]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[59]  V. Crespi,et al.  Theory of B(2)O and BeB(2) nanotubes: new semiconductors and metals in one dimension. , 2002, Physical review letters.

[60]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[61]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[65]  J. Kanamori Crystal Distortion in Magnetic Compounds , 1960 .

[66]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[67]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[68]  Rashed A. Chowdhury Accounts , 1949, Journal of the Royal Asiatic Society.