A Bayesian Approach to Background Modeling

Learning background statistics is an essential task for several visual surveillance applications such as incident detection and traf.c management. In this paper, we propose a new method for modeling background statistics of a dynamic scene. Each pixel is represented with layers of Gaussian distributions. Using recursive Bayesian learning, we estimate the probability distribution of mean and covariance of each Gaussian. The proposed algorithm preserves the multimodality of the background and estimates the number of necessary layers for representing each pixel. We compare our results with the Gaussian mixture background model. Experiments conducted on synthetic and video data demonstrate the superior performance of the proposed approach.

[1]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[2]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[3]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[4]  Joachim M. Buhmann,et al.  Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.

[5]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Azriel Rosenfeld,et al.  Detection and location of people in video images using adaptive fusion of color and edge information , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[7]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[8]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[9]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[11]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[12]  Michael Harville,et al.  Foreground segmentation using adaptive mixture models in color and depth , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[13]  Jitendra Malik,et al.  Robust Multiple Car Tracking with Occlusion Reasoning , 1994, ECCV.

[14]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[15]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.