A posteriori error estimates for elliptic problems with Dirac delta source terms
暂无分享,去创建一个
[1] A. H. Schatz,et al. Interior maximum-norm estimates for finite element methods, part II , 1995 .
[2] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[3] Ricardo H. Nochetto,et al. Local a posteriori error estimates and adaptive control of pollution effects , 2003 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] Monique Dauge,et al. Neumann and mixed problems on curvilinear polyhedra , 1992 .
[6] I. Babuska,et al. Analysis of mixed methods using mesh dependent norms , 1980 .
[7] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[8] E. Casas. L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .
[9] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[10] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[11] Ridgway Scott,et al. Finite element convergence for singular data , 1973 .
[12] I. Babuška,et al. Direct and inverse error estimates for finite elements with mesh refinements , 1979 .