Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

[1]  P. Asbeck Self‐absorption effects on the radiative lifetime in GaAs‐GaAlAs double heterostructures , 1977 .

[2]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[3]  P. Würfel,et al.  The chemical potential of radiation , 1982 .

[4]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[5]  E. Yablonovitch,et al.  Survey of defect‐mediated recombination lifetimes in GaAs epilayers grown by different methods , 1987 .

[6]  Richard K. Ahrenkiel,et al.  Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces , 1989 .

[7]  Sandip Tiwari,et al.  Material properties of p .. type GaAs at large dopings , 1990 .

[8]  Sarah Kurtz,et al.  High efficiency GaAs solar cells using GaInP/sub 2/ window layers , 1990, IEEE Conference on Photovoltaic Specialists.

[9]  J. Gray,et al.  Numerical modeling of photon recycling in solar cells , 1994 .

[10]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[11]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[12]  Jenny Nelson,et al.  Observation of suppressed radiative recombination in single quantum well p-i-n photodiodes , 1997 .

[13]  Keith I. Hopcraft,et al.  Ray tracing in absorbing media , 2005 .

[14]  Andreas W. Bett,et al.  Simulating single‐junction GaAs solar cells including photon recycling , 2006 .

[15]  J. L. Balenzategui,et al.  Detailed modelling of photon recycling: application to GaAs solar cells , 2006 .

[16]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[17]  F. Rubinelli,et al.  The influence of the InGaP window layer on the optical and electrical performance of GaAs solar cells , 2007 .

[18]  J. P. Connolly,et al.  Observation of photon recycling in strain-balanced quantum well solar cells , 2007 .

[19]  G. B. Lush,et al.  B-coefficient in n-type GaAs , 2009 .

[20]  Stephen J. Fonash,et al.  Homojunction Solar Cells , 2010 .

[21]  J. P. Connolly,et al.  Recent results for single‐junction and tandem quantum well solar cells , 2011 .

[22]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[23]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on $V_{\bf oc}$ and $J_{\bf sc}$ of III--V Solar Cells , 2013, IEEE Journal of Photovoltaics.

[24]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[25]  Mark S. Lundstrom,et al.  On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells , 2013, IEEE Journal of Photovoltaics.

[26]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[27]  Daniel Feuermann,et al.  Photovoltaic performance enhancement by external recycling of photon emission , 2013 .

[28]  F. Tuminello,et al.  Extending the 1-D Hovel Model for Coherent and Incoherent Back Reflections in Homojunction Solar Cells , 2013, IEEE Journal of Quantum Electronics.

[29]  Xufeng Wang,et al.  Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit , 2013, IEEE Journal of Photovoltaics.

[30]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[31]  M. Lundstrom,et al.  Performance-limiting factors for GaAs-based single nanowire photovoltaics. , 2014, Optics express.

[32]  Mark S. Lundstrom,et al.  Correlation of Built-In Potential and I–V Crossover in Thin-Film Solar Cells , 2014, IEEE Journal of Photovoltaics.