Continuous quadratic programming formulations of optimization problems on graphs

Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge separator problem, the maximum clique problem, and the maximum independent set problem. We show that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This continuous formulation is compared to known continuous quadratic programming formulations for the edge separator problem, the maximum clique problem, and the maximum independent set problem. All of these formulations, when expressed as maximization problems, are shown to follow from the convexity properties of the objective function along the edges of the feasible set. An algorithm is given which exploits the continuous formulation of the vertex separator problem to quickly compute approximate separators. Computational results are given.

[1]  Panos M. Pardalos,et al.  Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..

[2]  William W. Hager,et al.  Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..

[3]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[4]  Cem Evrendilek,et al.  Vertex Separators for Partitioning a Graph , 2008, Sensors.

[5]  Ilya Safro,et al.  Journal of Graph Algorithms and Applications a Multilevel Algorithm for the Minimum 2-sum Problem , 2022 .

[6]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[7]  Péter Kovács,et al.  LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[10]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[11]  Francesco Rinaldi New results on the equivalence between zero-one programming and continuous concave programming , 2009, Optim. Lett..

[12]  Hristo Djidjev Partitioning Planar Graphs with Vertex Costs: Algorithms and Applications , 2000, Algorithmica.

[13]  M. Borchardt An exact penalty approach for solving a class of minimization problems with boolean variables , 1988 .

[14]  Vipin Kumar,et al.  Multilevel Graph Partitioning Schemes , 1995, ICPP.

[15]  Kien Ming Ng,et al.  An algorithm for nonlinear optimization problems with binary variables , 2010, Comput. Optim. Appl..

[16]  Cid C. de Souza,et al.  Lagrangian Relaxation and Cutting Planes for the Vertex Separator Problem , 2007, ESCAPE.

[17]  Franz Rendl,et al.  A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..

[18]  M. Raghavachari,et al.  On Connections Between Zero-One Integer Programming and Concave Programming Under Linear Constraints , 1969, Oper. Res..

[19]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[20]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[21]  Jochen Harant Some news about the independence number of a graph , 2000, Discuss. Math. Graph Theory.

[22]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[23]  Marcello Pelillo,et al.  Parallelizable Evolutionary Dynamics Principles for Solving the Maximum Clique Problem , 1996, PPSN.

[24]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[25]  S. Vavasis,et al.  Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..

[26]  J. Ben Rosen,et al.  Penalty formulation for zero-one nonlinear programming , 1987, Discret. Appl. Math..

[27]  Panos M. Pardalos,et al.  Finding independent sets in a graph using continuous multivariable polynomial formulations , 2001, J. Glob. Optim..

[28]  Jin-Kao Hao,et al.  Breakout Local Search for the Vertex Separator Problem , 2013, IJCAI.

[29]  James R. Lee,et al.  Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..

[30]  Marcello Pelillo,et al.  Evolutionary Approach to the Maximum Clique Problem: Empirical Evidence on a Larger Scale , 1997 .

[31]  F. Tardella On the equivalence between some discrete and continuous optimization problems , 1991 .

[32]  Immanuel M. Bomze,et al.  Evolution towards the Maximum Clique , 1997, J. Glob. Optim..

[33]  Curt Jones,et al.  Finding Good Approximate Vertex and Edge Partitions is NP-Hard , 1992, Inf. Process. Lett..

[34]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[35]  Ilya Safro,et al.  Graph minimum linear arrangement by multilevel weighted edge contractions , 2006, J. Algorithms.

[36]  P. Pardalos,et al.  Checking local optimality in constrained quadratic programming is NP-hard , 1988 .

[37]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[38]  Marie-Jean Meurs,et al.  An exact algorithm for solving the vertex separator problem , 2011, J. Glob. Optim..

[39]  Immanuel M. Bomze,et al.  Copositive optimization - Recent developments and applications , 2012, Eur. J. Oper. Res..

[40]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[41]  Alan J. Hoffman,et al.  Extreme Varieties, Concave Functions and the Fixed Charge Problem , 2011 .

[42]  Egon Balas,et al.  The vertex separator problem: a polyhedral investigation , 2005, Math. Program..

[43]  William W. Hager,et al.  An exact algorithm for graph partitioning , 2013, Math. Program..

[44]  Heinz Bauer,et al.  Minimalstellen von Funktionen und Extremalpunkte , 1958 .

[45]  Junichiro Fukuyama,et al.  NP-completeness of the Planar Separator Problems , 2006, J. Graph Algorithms Appl..

[46]  Hiroshi Konno,et al.  A cutting plane algorithm for solving bilinear programs , 1976, Math. Program..

[47]  William W. Hager,et al.  Optimality conditions for maximizing a function over a polyhedron , 2014, Math. Program..

[48]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[49]  S. Lucidi,et al.  Exact Penalty Functions for Nonlinear Integer Programming Problems , 2010 .

[50]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[51]  Wen-xing Zhu Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming , 2003 .

[52]  Panos M. Pardalos,et al.  A continuous based heuristic for the maximum clique problem , 1993, Cliques, Coloring, and Satisfiability.

[53]  Egon Balas,et al.  The vertex separator problem: algorithms and computations , 2005, Math. Program..

[54]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[55]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[56]  David P. Williamson,et al.  Improved approximation algorithms for MAX SAT , 2000, SODA '00.

[57]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .