Continuous quadratic programming formulations of optimization problems on graphs
暂无分享,去创建一个
[1] Panos M. Pardalos,et al. Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..
[2] William W. Hager,et al. Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..
[3] S.,et al. An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .
[4] Cem Evrendilek,et al. Vertex Separators for Partitioning a Graph , 2008, Sensors.
[5] Ilya Safro,et al. Journal of Graph Algorithms and Applications a Multilevel Algorithm for the Minimum 2-sum Problem , 2022 .
[6] Bruce Hendrickson,et al. A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.
[7] Péter Kovács,et al. LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.
[8] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[9] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[10] Charles E. Leiserson,et al. Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[11] Francesco Rinaldi. New results on the equivalence between zero-one programming and continuous concave programming , 2009, Optim. Lett..
[12] Hristo Djidjev. Partitioning Planar Graphs with Vertex Costs: Algorithms and Applications , 2000, Algorithmica.
[13] M. Borchardt. An exact penalty approach for solving a class of minimization problems with boolean variables , 1988 .
[14] Vipin Kumar,et al. Multilevel Graph Partitioning Schemes , 1995, ICPP.
[15] Kien Ming Ng,et al. An algorithm for nonlinear optimization problems with binary variables , 2010, Comput. Optim. Appl..
[16] Cid C. de Souza,et al. Lagrangian Relaxation and Cutting Planes for the Vertex Separator Problem , 2007, ESCAPE.
[17] Franz Rendl,et al. A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..
[18] M. Raghavachari,et al. On Connections Between Zero-One Integer Programming and Concave Programming Under Linear Constraints , 1969, Oper. Res..
[19] Charles M. Fiduccia,et al. A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.
[20] Hans-Paul Schwefel,et al. Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.
[21] Jochen Harant. Some news about the independence number of a graph , 2000, Discuss. Math. Graph Theory.
[22] Samuel Burer,et al. On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..
[23] Marcello Pelillo,et al. Parallelizable Evolutionary Dynamics Principles for Solving the Maximum Clique Problem , 1996, PPSN.
[24] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[25] S. Vavasis,et al. Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..
[26] J. Ben Rosen,et al. Penalty formulation for zero-one nonlinear programming , 1987, Discret. Appl. Math..
[27] Panos M. Pardalos,et al. Finding independent sets in a graph using continuous multivariable polynomial formulations , 2001, J. Glob. Optim..
[28] Jin-Kao Hao,et al. Breakout Local Search for the Vertex Separator Problem , 2013, IJCAI.
[29] James R. Lee,et al. Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..
[30] Marcello Pelillo,et al. Evolutionary Approach to the Maximum Clique Problem: Empirical Evidence on a Larger Scale , 1997 .
[31] F. Tardella. On the equivalence between some discrete and continuous optimization problems , 1991 .
[32] Immanuel M. Bomze,et al. Evolution towards the Maximum Clique , 1997, J. Glob. Optim..
[33] Curt Jones,et al. Finding Good Approximate Vertex and Edge Partitions is NP-Hard , 1992, Inf. Process. Lett..
[34] Jeffrey D Ullma. Computational Aspects of VLSI , 1984 .
[35] Ilya Safro,et al. Graph minimum linear arrangement by multilevel weighted edge contractions , 2006, J. Algorithms.
[36] P. Pardalos,et al. Checking local optimality in constrained quadratic programming is NP-hard , 1988 .
[37] Katta G. Murty,et al. Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..
[38] Marie-Jean Meurs,et al. An exact algorithm for solving the vertex separator problem , 2011, J. Glob. Optim..
[39] Immanuel M. Bomze,et al. Copositive optimization - Recent developments and applications , 2012, Eur. J. Oper. Res..
[40] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[41] Alan J. Hoffman,et al. Extreme Varieties, Concave Functions and the Fixed Charge Problem , 2011 .
[42] Egon Balas,et al. The vertex separator problem: a polyhedral investigation , 2005, Math. Program..
[43] William W. Hager,et al. An exact algorithm for graph partitioning , 2013, Math. Program..
[44] Heinz Bauer,et al. Minimalstellen von Funktionen und Extremalpunkte , 1958 .
[45] Junichiro Fukuyama,et al. NP-completeness of the Planar Separator Problems , 2006, J. Graph Algorithms Appl..
[46] Hiroshi Konno,et al. A cutting plane algorithm for solving bilinear programs , 1976, Math. Program..
[47] William W. Hager,et al. Optimality conditions for maximizing a function over a polyhedron , 2014, Math. Program..
[48] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[49] S. Lucidi,et al. Exact Penalty Functions for Nonlinear Integer Programming Problems , 2010 .
[50] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[51] Wen-xing Zhu. Penalty Parameter for Linearly Constrained 0–1 Quadratic Programming , 2003 .
[52] Panos M. Pardalos,et al. A continuous based heuristic for the maximum clique problem , 1993, Cliques, Coloring, and Satisfiability.
[53] Egon Balas,et al. The vertex separator problem: algorithms and computations , 2005, Math. Program..
[54] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[55] T. Motzkin,et al. Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.
[56] David P. Williamson,et al. Improved approximation algorithms for MAX SAT , 2000, SODA '00.
[57] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .