On BFC-MSMIP strategies for scenario cluster partitioning, and twin node family branching selection and bounding for multistage stochastic mixed integer programming

In the branch-and-fix coordination (BFC-MSMIP) algorithm for solving large-scale multistage stochastic mixed integer programming problems, we find it crucial to decide the stages where the nonanticipativity constraints are explicitly considered in the model. This information is materialized when the full model is broken down into a scenario cluster partition with smaller subproblems. In this paper we present a scheme for obtaining strong bounds and branching strategies for the Twin Node Families to increase the efficiency of the procedure BFC-MSMIP, based on the information provided by the nonanticipativity constraints that are explicitly considered in the problem. Some computational experience is reported to support the efficiency of the new scheme.

[1]  L. Escudero On a mixture of the fix-and-relax coordination and Lagrangian substitution schemes for multistage stochastic mixed integer programming , 2009 .

[2]  Laureano F. Escudero,et al.  Forestry management under uncertainty , 2011, Ann. Oper. Res..

[3]  Laureano F. Escudero,et al.  A stochastic 0-1 program based approach for the air traffic flow management problem , 2000, Eur. J. Oper. Res..

[4]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[5]  Lewis Ntaimo,et al.  The Million-Variable “March” for Stochastic Combinatorial Optimization , 2005, J. Glob. Optim..

[6]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[7]  W. Ziemba,et al.  Worldwide asset and liability modeling , 1998 .

[8]  Laureano F. Escudero,et al.  BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs , 2003, Eur. J. Oper. Res..

[9]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[10]  María Merino,et al.  BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems , 2009 .

[11]  María Merino,et al.  A two-stage stochastic integer programming approach as a mixture of Branch-and-Fix Coordination and Benders Decomposition schemes , 2007, Ann. Oper. Res..

[12]  W. Ziemba,et al.  A dynamic model for asset liability management for defined benefit pension funds , 1996 .

[13]  William T. Ziemba,et al.  Applications of Stochastic Programming (MPS-SIAM Series in Optimization) , 2005 .

[14]  Laureano F. Escudero,et al.  On stochastic dynamic programming for solving large-scale planning problems under uncertainty , 2009, Comput. Oper. Res..

[15]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[16]  Rüdiger Schultz,et al.  Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse , 2003, SIAM J. Optim..

[17]  Gloria Pérez,et al.  An Approach for Strategic Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming , 2003, J. Glob. Optim..

[18]  Suvrajeet Sen,et al.  A heuristic procedure for stochastic integer programs with complete recourse , 2006, Eur. J. Oper. Res..

[19]  S. Uryasev,et al.  Stochastic optimization : Algorithms and Applications , 2001 .

[20]  Laureano F. Escudero,et al.  On a stochastic sequencing and scheduling problem , 2007, Comput. Oper. Res..

[21]  R. Wets Programming Under Uncertainty: The Equivalent Convex Program , 1966 .

[22]  Rüdiger Schultz,et al.  Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse , 2006, Math. Program..

[23]  G. Nemhauser,et al.  Integer Programming , 2020 .

[24]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[25]  Peter Kall,et al.  Stochastic Programming , 1995 .

[26]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[27]  María Merino,et al.  A general algorithm for solving two-stage stochastic mixed 0-1 first-stage problems , 2009, Comput. Oper. Res..

[28]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .