A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration

We present a multilevel extension of the popular ldquothresholded Landweberrdquo algorithm for wavelet-regularized image restoration that yields an order of magnitude speed improvement over the standard fixed-scale implementation. The method is generic and targeted towards large-scale linear inverse problems, such as 3-D deconvolution microscopy. The algorithm is derived within the framework of bound optimization. The key idea is to successively update the coefficients in the various wavelet channels using fixed, subband-adapted iteration parameters (step sizes and threshold levels). The optimization problem is solved efficiently via a proper chaining of basic iteration modules. The higher level description of the algorithm is similar to that of a multigrid solver for PDEs, but there is one fundamental difference: the latter iterates though a sequence of multiresolution versions of the original problem, while, in our case, we cycle through the wavelet subspaces corresponding to the difference between successive approximations. This strategy is motivated by the special structure of the problem and the preconditioning properties of the wavelet representation. We establish that the solution of the restoration problem corresponds to a fixed point of our multilevel optimizer. We also provide experimental evidence that the improvement in convergence rate is essentially determined by the (unconstrained) linear part of the algorithm, irrespective of the type of wavelet. Finally, we illustrate the technique with some image deconvolution examples, including some real 3-D fluorescence microscopy data.

[1]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[2]  Fionn Murtagh,et al.  Fast communication , 2002 .

[3]  Charles A. Bouman,et al.  A general framework for nonlinear multigrid inversion , 2005, IEEE Transactions on Image Processing.

[4]  Touradj Ebrahimi,et al.  Christopoulos: Thc Jpeg2000 Still Image Coding System: an Overview the Jpeg2000 Still Image Coding System: an Overview , 2022 .

[5]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[6]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[7]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[8]  Thierry Blu,et al.  Generalized Daubechies Wavelet Families , 2007, IEEE Transactions on Signal Processing.

[9]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[10]  Jinchao Xu The method of subspace corrections , 2001 .

[11]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.

[12]  Craig K. Rushforth,et al.  Image restoration using multigrid methods. , 1991, Applied optics.

[13]  M. Unser,et al.  The colored revolution of bioimaging , 2006, IEEE Signal Processing Magazine.

[14]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[15]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[16]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[17]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[18]  Rafael Molina,et al.  Image restoration in astronomy: a Bayesian perspective , 2001, IEEE Signal Process. Mag..

[19]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[20]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Jeffrey A. Fessler,et al.  An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms , 2007, IEEE Transactions on Image Processing.

[22]  Gaofeng Wang,et al.  Solution of inverse problems in image processing by wavelet expansion , 1995, IEEE Trans. Image Process..

[23]  Michael Unser,et al.  From differential equations to the construction of new wavelet-like bases , 2006, IEEE Transactions on Signal Processing.

[24]  Thierry Blu,et al.  The SURE-LET Approach to Image Denoising , 2007, IEEE Transactions on Image Processing.

[25]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[28]  Michael Unser,et al.  Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Thierry Blu,et al.  The fractional spline wavelet transform: definition end implementation , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[30]  Michael Elad,et al.  Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization , 2007 .

[31]  José M. Bioucas-Dias,et al.  Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors , 2006, IEEE Transactions on Image Processing.

[32]  Michel Defrise,et al.  A note on wavelet-based inversion algorithms , 2002 .

[33]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[34]  Wayne Lawton,et al.  Multiresolution properties of the wavelet Galerkin operator , 1991 .

[35]  William L. Briggs,et al.  Wavelets and Multigrid , 1993, SIAM J. Sci. Comput..

[36]  R. Nowak,et al.  Fast wavelet-based image deconvolution using the EM algorithm , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[37]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[38]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[39]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[40]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[41]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[42]  GermanyNumerische Mathematik,et al.  Multilevel Preconditioning , 1992 .

[43]  I. Daubechies,et al.  Tomographic inversion using L1-norm regularization of wavelet coefficients , 2006, physics/0608094.

[44]  T. Pan,et al.  Numerical study of multigrid implementations of some iterative image reconstruction algorithms , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[45]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[46]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[47]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[48]  E Weinan,et al.  Hierarchical method for elliptic problems using wavelet , 1992 .

[49]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[50]  L D Cromwell,et al.  Filtering noise from images with wavelet transforms , 1991, Magnetic resonance in medicine.

[51]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[52]  M. Fornasier Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .

[53]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[54]  D. Hunter,et al.  Optimization Transfer Using Surrogate Objective Functions , 2000 .

[55]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[56]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[57]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[58]  Michael Unser,et al.  A Fast Thresholded Landweber Algorithm for Wavelet-Regularized Multidimensional Deconvolution , 2008, IEEE Transactions on Image Processing.

[59]  S. Mallat A wavelet tour of signal processing , 1998 .

[60]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997, Numer. Linear Algebra Appl..

[61]  Tinsu Pan,et al.  Numerical study of multigrid implementations of some iterative image reconstruction algorithms , 1991 .

[62]  Michael Elad,et al.  Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.