A cellular automaton methodology for the simulation of integrated circuit fabrication processes

Abstract This paper presents a methodology for the simulation of physical processes with local interactions using cellular automata. Such processes are common in integrated circuit fabrication, and their simulation presents one of the most difficult problems in developing technology computer aided design (TCAD) systems. The simulated integrated circuit fabrication processes considered are lithography, oxidation, and deposition processes. The proposed methodology establishes the ability to capture the essential features of these integrated circuit fabrication processes and to translate them into a suitable form, in order to obtain an effective cellular automaton model, for each process. Several numerical experiments were carried out, in this work, using the cellular automaton algorithms obtained, and their results were found to be in very good agreement with published experimental results. Furthermore, cellular automaton algorithms exploit the inherent parallelism of the cellular automaton model and run fast on serial computers.

[1]  Andrew R. Neureuther,et al.  Negative resist corner rounding. Envelope volume modeling , 1996 .

[2]  李幼升,et al.  Ph , 1989 .

[3]  I. Karafyllidis Simulation of the negative chemical amplification deep-ultraviolet process in integrated circuit fabrication , 1997 .

[4]  G. Vichniac Simulating physics with cellular automata , 1984 .

[5]  Ernst Rank,et al.  An Improved Cellular Automaton Model for Traffic Flow Simulation , 1996 .

[6]  Ioannis G. Karafyllidis,et al.  A new simulator for the oxidation process in integrated circuit fabrication based on cellular automata , 1999 .

[7]  A. Neureuther,et al.  Modeling projection printing of positive photoresists , 1975, IEEE Transactions on Electron Devices.

[8]  R. Feynman Simulating physics with computers , 1999 .

[9]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[10]  Tommaso Toffoli,et al.  CAM: A high-performance cellular-automaton machine , 1984 .

[11]  Bernard Testa,et al.  Cellular automata models of biochemical phenomena , 1999, Future Gener. Comput. Syst..

[12]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[13]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[14]  Arjen Schoneveld,et al.  P-CAM: a framework for parallel complex systems simulations , 1999, Future Gener. Comput. Syst..

[15]  Ioannis G. Karafyllidis,et al.  Dependence of developed negative resist profiles on exposure energy dose: experiment, modeling, and simulation , 1998 .

[16]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[17]  Laure Tougne,et al.  Discrete Parabolas and Circles on 2D Cellular Automata , 1999, Theor. Comput. Sci..

[18]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[19]  Ioannis G. Karafyllidis,et al.  Negative resist profiles of close-spaced parallel and isolated lines: experiment, modelling and simulation , 1999 .

[20]  Robert W. Dutton,et al.  Robust, stable, and accurate boundary movement for physical etching and deposition simulation , 1997 .

[21]  Koppolu Sasidhar,et al.  CAA Decoder for Cellular Automata Based Byte Error Correcting Code , 1996, IEEE Trans. Computers.

[22]  Roberto Serra,et al.  An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata , 1999, Future Gener. Comput. Syst..

[23]  Ioannis G. Karafyllidis,et al.  Study of lithography profiles developed on non-planar Si surfaces , 1999 .

[24]  Yoshihito Amemiya,et al.  Cellular-Automaton Circuits Using Single-Electron-Tunneling Junctions , 1997 .

[25]  C. G. Willson,et al.  Introduction to microlithography , 1994 .

[26]  Andrew R. Neureuther,et al.  Models and algorithms for three-dimensional topography simulation with SAMPLE-3D , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[27]  Katsuyuki Ochiai,et al.  A high-speed 2-D topography simulator based on a pixel model , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Ioannis G. Karafyllidis,et al.  Negative resist profiles in 248 nm photolithography: experiment, modelling and simulation , 1998 .

[29]  Paul Isaac Hagouel,et al.  Developer temperature effect on negative deep ultraviolet resists: Characterization, modeling, and simulation , 1997 .

[30]  Ioannis G. Karafyllidis,et al.  Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape , 1996 .

[31]  Panagiotis Tzionas,et al.  A cellular automaton for the determination of the mean velocity of moving objects and its VLSI implementation , 1996, Pattern Recognit..

[32]  Ioannis G. Karafyllidis,et al.  Simulation of the image reversal submicron process in integrated circuit fabrication , 1996 .

[33]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[34]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[35]  Ioannis G. Karafyllidis,et al.  Simulation of two-dimensional photoresist etching process in integrated circuit fabrication using cellular automata , 1995 .

[36]  Masato Ikegawa,et al.  Deposition Profile Simulation Using the Direct Simulation Monte Carlo Method , 1989 .

[37]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[38]  Ioannis G. Karafyllidis,et al.  Simulation of deposition-topography granular distortion for TCAD , 1998 .

[39]  Robert W. Dutton,et al.  Heterogeneous process simulation tool integration , 1996 .

[40]  H. J. Kim,et al.  Dependence of Defects in Optical Lithography , 1992 .

[41]  Santanu Chattopadhyay,et al.  Additive cellular automata : theory and applications , 1997 .

[42]  Marco Tomassini,et al.  Generating high-quality random numbers in parallel by cellular automata , 1999, Future Gener. Comput. Syst..

[43]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[44]  Mark E. Law,et al.  Grid adaption near moving boundaries in two dimensions for IC process simulation , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..