Front initiation on microdesigned composite catalysts.

We first briefly review the subject of spatiotemporal pattern formation on microdesigned composite catalysts. One of the most significant interaction mechanisms between different reacting domains (consisting of different metal catalysts such as Pt and Rh, coupled through surface diffusion) is the initiation of reaction fronts at the interface between them. We then explore in some detail the effect of two-dimensional composite geometry on this basic building block of composite catalyst dynamics. (c) 2002 American Institute of Physics.

[1]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[2]  G. Somorjai,et al.  Lithographic Fabrication of Model Systems in Heterogeneous Catalysis and Surface Science Studies , 1998 .

[3]  G. Bunimovich,et al.  Reverse-Flow Operation in Fixed Bed Catalytic Reactors , 1996 .

[4]  A. R. Bishop,et al.  Propagation failure, universal scalings and Goldstone modes , 2001 .

[5]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[6]  A. Lázár,et al.  Involutes: the geometry of chemical waves rotating in annular membranes. , 1995, Chaos.

[7]  Markus Bär,et al.  Composite Catalyst Surfaces: Effect of Inert and Active Heterogeneities on Pattern Formation , 1996 .

[8]  R. A. Schmitz,et al.  Spatial effects on supported catalysts , 1987 .

[9]  J. Gollub,et al.  Hidden symmetries of parametrically forced waves , 1993 .

[10]  Pratik J. Shah,et al.  Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition , 1999 .

[11]  G. Ertl,et al.  Spatio-temporal pattern formation during catalytic CO oxidation on a Pt(100) surface modified with submonolayers of Au , 1997 .

[12]  Yunfeng Lu,et al.  Rapid prototyping of patterned functional nanostructures , 2000, Nature.

[13]  Carey,et al.  Resonant phase patterns in a reaction-diffusion system , 2000, Physical review letters.

[14]  Alexander S. Mikhailov,et al.  Controlling Chemical Turbulence by Global Delayed Feedback: Pattern Formation in Catalytic CO Oxidation on Pt(110) , 2001, Science.

[15]  R. Imbihl,et al.  Square chemical waves in the catalytic reaction NO + H2 on a rhodium(110) surface , 1994, Nature.

[16]  Y. Kevrekidis,et al.  Catalysis on microstructured surfaces , 1996 .

[17]  Bar,et al.  Front propagation and pattern formation in anisotropic bistable media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Alkiviades C. Payatakes,et al.  Flow regimes and relative permeabilities during steady-state two-phase flow in porous media , 1995, Journal of Fluid Mechanics.

[19]  I. Kevrekidis,et al.  Chemical waves and adsorbate-induced segregation on a Pt(100) surface microstructured with a thin Rh/Pt film , 1999 .

[20]  James P. Keener,et al.  Re-entry in an anatomical model of the heart , 1995 .

[21]  Markus Bär,et al.  Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model , 1997 .

[22]  I. Kevrekidis,et al.  Chemically resolved dynamical imaging of catalytic reactions on composite surfaces , 1998 .

[23]  Ioannis G. Kevrekidis,et al.  Dynamics on Microcomposite Catalytic Surfaces: The Effect of Active Boundaries , 1999 .

[24]  I. Kevrekidis,et al.  Catalysis on mesoscopic composite surfaces: influence of palladium boundaries on pattern formation during CO oxidation on Pt(1 1 0) , 1998 .

[25]  S. Shvartsman,et al.  Dynamics of catalytic reactions on microdesigned surfaces , 2001 .

[26]  G. Ertl,et al.  Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum , 1990, Nature.

[27]  Anna T. Lawniczak,et al.  Turing pattern formation in heterogeneous media , 1996 .

[28]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[29]  B. Delmon,et al.  Kinetic study of CO oxidation on copper modified Pt(111) , 1998 .

[30]  Rasmussen,et al.  Observation of front bifurcations in controlled geometries: From one to two dimensions. , 1995, Physical review letters.

[31]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 2000, Physical review letters.

[32]  G. Beylkin,et al.  A Multiresolution Strategy for Numerical Homogenization , 1995 .

[33]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[34]  Markus Bär,et al.  Catalysis on microcomposite surfaces , 1996 .

[35]  James P. Keener,et al.  Homogenization and propagation in the bistable equation , 2000 .

[36]  A. Gilbert A Comparison of Multiresolution and Classical One-Dimensional Homogenization Schemes , 1998 .

[37]  Y. Kevrekidis,et al.  Microchemical engineering of catalytic reactions , 1998 .

[38]  I. Kevrekidis,et al.  Formation of two-dimensional concentration pulses on microdesigned composite catalyst surfaces. , 2001, Physical review letters.

[39]  Hsueh-Chia Chang The domain model for heterogeneous catalysis , 1983 .

[40]  Y. Kevrekidis,et al.  Pattern formation in restricted geometries: The NO+CO reaction on Pt(100) , 2000 .

[41]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[42]  Ertl,et al.  Pattern formation in composite excitable media. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[44]  D. Roose,et al.  A computer-assisted study of pulse dynamics in anisotropic media , 2001 .

[45]  H. Iwasaki,et al.  Diffusive Propagation of Chemical Waves through a Microgap , 2000 .

[46]  Graham,et al.  Catalysis on microstructured surfaces: Pattern formation during CO oxidation in complex Pt domains. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  James P. Keener,et al.  Rotating Spiral Waves Created by Geometry , 1994, Science.

[48]  T. Melli,et al.  Mechanics of Gas-Liquid Flow in Packed-Bed Contactors , 1991 .

[49]  W. Harmon Ray,et al.  The Bifurcation Behavior of Tubular Reactors. , 1982 .

[50]  B. Engquist,et al.  Wavelet-Based Numerical Homogenization , 1998 .

[51]  G. Whitesides,et al.  Patterning proteins and cells using soft lithography. , 1999, Biomaterials.

[52]  G. Dewel,et al.  Reaction–Diffusion Patterns in Confined Chemical Systems , 2000 .

[53]  Dan Luss,et al.  Pattern formation on a nonuniformly active ring , 1996 .

[54]  James W. Evans,et al.  Fluctuation-Induced Transitions in a Bistable Surface Reaction: Catalytic CO Oxidation on a Pt Field Emitter Tip , 1999 .

[55]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[56]  K. Showalter,et al.  Anisotropy and spiral organizing centers in patterned excitable media. , 1995, Science.

[57]  Hiroshi Iwasaki,et al.  Unidirectional Propagation of Chemical Waves through Microgaps between Zones with Different Excitability , 2000 .

[58]  A. T. Winfree,et al.  Evolving perspectives during 12 years of electrical turbulence. , 1998, Chaos.

[59]  K Asakura,et al.  Effects of Boundaries on Pattern Formation: Catalytic Oxidation of CO on Platinum , 1994, Science.

[60]  Wolfgang Ehrfeld,et al.  State-of-the-art in microreaction technology : concepts, manufacturing and applications , 1999 .

[61]  James P. Keener,et al.  Propagation of Waves in an Excitable Medium with Discrete Release Sites , 2000, SIAM J. Appl. Math..

[62]  Katharina Krischer,et al.  Oscillatory CO oxidation on Pt(110) : modeling of temporal self-organization , 1992 .

[63]  A. Lázár,et al.  Waves of excitation on nonuniform membrane rings, caustics, and reverse involutes. , 1997, Chaos.

[64]  Markus Bär,et al.  Spiral waves in a surface reaction: Model calculations , 1994 .

[65]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[66]  Ullrich Steiner,et al.  Surface-induced structure formation of polymer blends on patterned substrates , 1998, Nature.

[67]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[68]  Markus Bär,et al.  ANOMALOUS DISPERSION AND PULSE INTERACTION IN AN EXCITABLE SURFACE REACTION , 1999 .

[69]  A G Papathanasiou,et al.  Spatiotemporal Addressing of Surface Activity , 2001, Science.

[70]  Hartmann,et al.  Rotating chemical waves in small circular domains. , 1996, Physical review letters.