Experimental Investigation of Phase Equilibria in the Cu-Co-Zr System

[1]  G. Wang,et al.  Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites , 2015 .

[2]  W. Cai,et al.  Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys , 2015 .

[3]  J. Eckert,et al.  Microstructural Evolution and Mechanical Behaviour of Metastable Cu–Zr–Co Alloys , 2014 .

[4]  J. Eckert,et al.  Phase formation of Cu50−xCoxZr50 (x = 0–20 at.%) alloys: Influence of cooling rate , 2014 .

[5]  Y. Kawazoe,et al.  Phase stability, elastic and electronic properties of Cu–Zr binary system intermetallic compounds: A first-principles study , 2014 .

[6]  F. Wu,et al.  Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading , 2014, Journal of Materials Science.

[7]  W. Gierlotka,et al.  Thermodynamic description of the binary Ag–Ga system , 2011 .

[8]  J. Eckert,et al.  Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys , 2011 .

[9]  Yuan Wu,et al.  Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties , 2011 .

[10]  A. Takeuchi,et al.  Recent development and application products of bulk glassy alloys , 2011 .

[11]  Yuan Wu,et al.  Bulk Metallic Glass Composites with Transformation‐Mediated Work‐Hardening and Ductility , 2010, Advanced materials.

[12]  S. Zhou,et al.  Phase stability for the Cu–Zr system: First-principles, experiments and solution-based modeling , 2010 .

[13]  X. J. Liu,et al.  Experimental determination and thermodynamic assessment of the phase diagram in the Co-Zr system , 2009 .

[14]  Zhen-hua Chen,et al.  Bulk metallic glass-forming region of Cu–Zr binary and Cu–Zr based multicomponent alloy systems , 2009 .

[15]  K. Itagaki,et al.  Thermodynamic investigation of the Cu–Zr system , 2008 .

[16]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[17]  J. Eckert,et al.  Mechanical properties of bulk metallic glasses and composites , 2007 .

[18]  N. Wang,et al.  The thermodynamic re-assessment of the Cu–Zr system , 2006 .

[19]  Wei Zhang,et al.  New Cu¿Zr-based bulk metallic glasses with large diameters of up to 1.5cm , 2006 .

[20]  M. Asta,et al.  First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics , 2005 .

[21]  J. Kubišta,et al.  Thermodynamics of the liquid Co-Cu system and calculation of phase diagram , 2000 .

[22]  H. Lukas,et al.  A new thermodynamic description of the Cu-Zr system , 1994 .

[23]  D. Arias,et al.  Cu-Zr (Copper-Zirconium) , 1990 .

[24]  E. Kneller,et al.  The Alloy System Copper- Zirconium. Part 1. Phase Diagram and Structural Relations. , 1986 .

[25]  W. H. Pechin,et al.  THE ZIRCONIUM-COBALT ALLOY SYSTEM , 1964 .

[26]  R. Napolitano,et al.  A new method for measuring the thermodynamic properties of undercooled liquid and amorphous Cu–Zr alloys , 2014 .

[27]  T. Chart,et al.  A thermodynamically calculated phase diagram for the Co-Cr-Zr system , 1979 .