The three temperature model for the fast-axial-flow CO2 laser

It is pointed out that the vibrational temperatures of the symmetric stretch and bending modes of CO2 being almost equal, are close to the translational temperature (T) of the fast-axial-flow continuous wave CO2 laser plasma. This allows one to base the analysis of the processes in such plasmas on the three temperature approximation (translational temperature, vibrational temperature of the asymmetric stretch mode of CO2 (T3) and vibrational temperature of N2 (T4)) leading to a substantial reduction of computer time when compared with the conventional five temperature approximation. Approximations of the three temperature model are supported by the results of our computations and by the available experimental data. When applied to the industrial fast-axial-flow laser, our model predicts a gradual increase in T, T3 and T4 along the laser axis, with T reaching about 360 K, T3 and T4 reaching about 2500 K, which agrees with experimental observations.

[1]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[2]  Raymond L. Taylor,et al.  Survey of Vibrational Relaxation Data for Processes Important in the C O 2 - N 2 Laser System , 1969 .

[3]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[4]  A. Cameron,et al.  Elements of magnetogasdynamics , 1967 .

[5]  W. Kruer Intense laser plasma interactions: From Janus to Nova , 1991 .

[6]  R. M. Thomson The thermal conductivity of gases with vibrational internal energy , 1978 .

[7]  Evgenii Pavlovich Velikhov,et al.  Glow discharge in a gas flow , 1982 .

[8]  J. Uhlenbusch,et al.  Influence of turbulence and convection on the output of a high-power CO2 laser with a fast axial flow , 1987 .

[9]  K. Kuo Principles of combustion , 1986 .

[10]  Edward A. Mason,et al.  Approximate Formula for the Thermal Conductivity of Gas Mixtures , 1958 .

[11]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[12]  P. Young Experimental study of filamentation in laser–plasma interactions , 1991 .

[13]  B. M. Penetrante,et al.  ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas , 1990 .

[14]  H. Rose,et al.  Collective parametric instabilities of many overlapping laser beams with finite bandwidth , 1992 .

[15]  H Gundel,et al.  Numerical modelling of fast-flow CO2 lasers. I: The model , 1993 .

[16]  V. N. T︠S︡ytovich An introduction to the theory of plasma turbulence , 1972 .

[17]  K. Wu,et al.  Theoretical calculation of the laser characteristics of a transversely excited CO2 laser , 1991 .

[18]  N. M. Reddy,et al.  Theoretical analysis of power generation in gasdynamic lasers , 1991 .

[19]  R. M. Thomson,et al.  Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields , 1984 .

[20]  W. Wakeham,et al.  The Transport Properties of Carbon Dioxide , 1990 .

[21]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[22]  Ronald C. Davidson,et al.  Methods in Nonlinear Plasma Theory , 1973 .

[23]  Anthony E. Siegman,et al.  Exact cavity equations for lasers with large output coupling , 1980 .

[24]  L. Burmeister Convective heat transfer , 1983 .

[25]  H. Haus,et al.  Electron distributions in gas lasers , 1974 .

[26]  M G Baeva,et al.  Numerical investigation of CW CO2 laser with a fast turbulent flow , 1993 .

[27]  Henri Brunet,et al.  Aerodynamic Stabilization Of Transverse Dc-Discharges For CO2 Lasers , 1989, International Symposium on High Power Laser Systems and Applications.

[28]  S E Moody,et al.  Numerical solution of the exact cavity equations of motion for an unstable optical resonator. , 1990, Applied optics.

[29]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[30]  A. A. Galeev,et al.  Nonlinear plasma theory , 1969 .

[31]  J. Boris,et al.  A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems , 1977 .

[32]  E. Stark Measurement of the 10°0–02°0 relaxation rate in CO2 , 1973 .

[33]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[34]  J. S. Marshall,et al.  Molecular Theory of Gases , 1967 .

[35]  R. Sudan,et al.  Renormalization group analysis of reduced magnetohydrodynamics with application to subgrid modeling , 1991 .

[36]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[37]  W. Wakeham,et al.  The thermal conductivity of argon, carbon dioxide and nitrous oxide , 1987 .

[38]  J. Lowke,et al.  Predicted electron transport coefficients and operating characteristics of CO2–N2–He laser mixtures , 1973 .

[39]  K. Manes,et al.  Analysis of the CO2 TEA laser , 1972 .

[40]  L. Pekárek,et al.  IONIZATION WAVES (STRIATIONS) IN A DISCHARGE PLASMA , 1968 .

[41]  Louis Rosenhead,et al.  The Second Coefficient of Viscosity of Liquids and Gases , 1952 .