Marginal ridge conceptual predictive model selection criterion in linear mixed models

Abstract In linear mixed model selection under ridge regression, we propose the model selection criteria based on conceptual predictive () statistic.The first proposed criterion is marginal ridge Cp () statistic based on the expected marginal Gauss discrepancy. An improvement of MRCp (IMRCp) statistic is then suggested and demonstrated, which is also an asymptotically unbiased estimator of the expected marginal Gauss discrepancy. Finally, a real data analysis and a Monte Carlo simulation study are given to examine the performance of the proposed criteria.

[1]  J. Cavanaugh,et al.  An alternate version of the conceptual predictive statistic based on a symmetrized discrepancy measure , 2010 .

[2]  C. L. Mallows Some comments on C_p , 1973 .

[3]  Xu-Qing Liu,et al.  General ridge predictors in a mixed linear model , 2013 .

[4]  R. Sparks,et al.  The multivariate Cp , 1983 .

[5]  Cheng Wenren,et al.  Conditional conceptual predictive statistic for mixed model selection , 2015 .

[6]  Y. Fujikoshi,et al.  Modified AIC and Cp in multivariate linear regression , 1997 .

[7]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[8]  Douglas C. Montgomery,et al.  PREDICTION USING REGRESSION MODELS WITH MULTICOLLINEAR PREDICTOR VARIABLES , 1993 .

[9]  Joseph E. Cavanaugh,et al.  Estimation Optimality of Corrected AIC and Modified Cp in Linear Regression , 2006 .

[10]  Lexin Li,et al.  Longitudinal data model selection , 2006, Comput. Stat. Data Anal..

[11]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[12]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[13]  Cheng Wenren,et al.  Marginal Conceptual Predictive Statistic for Mixed Model Selection , 2016 .

[14]  S. R. Searle,et al.  The estimation of environmental and genetic trends from records subject to culling. , 1959 .

[15]  Zhuang Fengqing,et al.  Patients’ Responsibilities in Medical Ethics , 2016 .

[16]  J. Hodges,et al.  Counting degrees of freedom in hierarchical and other richly-parameterised models , 2001 .

[17]  M. Özkale,et al.  An evaluation of ridge estimator in linear mixed models: an example from kidney failure data , 2017 .

[18]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.