Measuring the Quality of Shifting and Scaling Patterns in Biclusters

The most widespread biclustering algorithms use the Mean Squared Residue (MSR) as measure for assessing the quality of biclusters. MSR can identify correctly shifting patterns, but fails at discovering biclusters presenting scaling patterns. Virtual Error (VE) is a measure which improves the performance of MSR in this sense, since it is effective at recognizing biclusters containing shifting patters or scaling patterns as quality biclusters. However, VE presents some drawbacks when the biclusters present both kind of patterns simultaneously. In this paper, we propose a improvement of VE that can be integrated in any heuristic to discover biclusters with shifting and scaling patterns simultaneously.

[1]  Federico Divina,et al.  Virtual Error: A New Measure for Evolutionary Biclustering , 2007, EvoBIO.

[2]  Philip S. Yu,et al.  An Improved Biclustering Method for Analyzing Gene Expression Profiles , 2005, Int. J. Artif. Intell. Tools.

[3]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[4]  Armando Blanco,et al.  Possibilistic approach for biclustering microarray data , 2007, Comput. Biol. Medicine.

[5]  Jesús S. Aguilar-Ruiz,et al.  Shifting and scaling patterns from gene expression data , 2005, Bioinform..

[6]  Takashi Yoneya,et al.  TCP: a tool for designing chimera proteins based on the tertiary structure information , 2009, BMC Bioinformatics.

[7]  Padraig Cunningham,et al.  Application of Simulated Annealing to the Biclustering of Gene Expression Data , 2006, IEEE Transactions on Information Technology in Biomedicine.

[8]  Claire Tilstone DNA microarrays: Vital statistics , 2003, Nature.

[9]  Anthony K. H. Tung,et al.  Mining Shifting-and-Scaling Co-Regulation Patterns on Gene Expression Profiles , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[10]  Roded Sharan,et al.  Discovering statistically significant biclusters in gene expression data , 2002, ISMB.

[11]  Zhoujun Li,et al.  Biclustering of microarray data with MOSPO based on crowding distance , 2009, BMC Bioinformatics.

[12]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[13]  Pierre Baldi,et al.  DNA Microarrays and Gene Expression - From Experiments to Data Analysis and Modeling , 2002 .

[14]  Fabrício Olivetti de França,et al.  Multi-Objective Biclustering: When Non-dominated Solutions are not Enough , 2009, J. Math. Model. Algorithms.

[15]  Federico Divina,et al.  Biclustering of expression data with evolutionary computation , 2006, IEEE Transactions on Knowledge and Data Engineering.

[16]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[17]  Jesús S. Aguilar-Ruiz,et al.  Biclustering of Gene Expression Data Based on Local Nearness , 2006, EGC.

[18]  Philip S. Yu,et al.  Clustering by pattern similarity in large data sets , 2002, SIGMOD '02.

[19]  Eckart Zitzler,et al.  An EA framework for biclustering of gene expression data , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).