Independent component analysis and beyond

Independent component analysis (ICA) is a tool for statistical data analysis and signal processing that is able to decompose multivariate signals into their underlying source components. Although the classical ICA model is highly useful, there are many real-world applications that require powerful extensions of ICA. This thesis presents new methods that extend the functionality of ICA. Reliability and grouping of independent components with noise injection. Usually noise is considered to be destructive. We present a new method that constructively injects noise to assess the reliability and the grouping structure of empirical independent component estimates. We generalize hereby earlier work on reliability assessment based on bootstrap to arbitrary ICA algorithms. Our method can be viewed as a Monte-Carlo-style approximation of the curvature of some performance measure at the solution. Simulations using artificial and real-world data validate our approach. Robust and overcomplete ICA with inlier detection. Classical ICA algorithms are often sensitive to outliers. We present a new ICA algorithm for super-Gaussian sources that is based on an index for outlier detection that uses nearest neighbor methods. The outlier index is not employed to remove outliers but instead directly to find inliers— the data points in the most concentrated regions—which represent the ICA directions for super-Gaussian source signals. Our inlier-based approach is by construction robust against outliers and can be naturally applied to the overcomplete ICA problem, in which there are more sources than sensors. A comparison of our new method with classical algorithms—in terms of robustness—and a comprehensive empirical analysis of its performance—with respect to dimensionality, number of sources and number of data points—underlines its key advantages. Nonlinear ICA with kernel methods. We present a kernel-based algorithm for non-linear ICA that uses kernel feature spaces to approximate nonlinearities. Applying linear ICA based on time structure in the resulting high-dimensional spaces can un-mix strongly nonlinear mixtures. The key is to use some dimensionality reduction technique to make the application of ICA methods computationally and numerically tractable. Experiments demonstrate the excellent performance and efficiency of our algorithm for several problems of nonlinear ICA. The work of this dissertation has been done at the Fraunhofer institute FIRST (former GMD FIRST) in Berlin. I would like to thank all current and former members of this group for creating an open research atmosphere and for many productive discussions, including Dr. In particular , I thank my roommate Dr. Pavel Laskov who helped me often in many …

[1]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[2]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[3]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[4]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[5]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[6]  Jean-Francois Cardoso,et al.  THE THREE EASY ROUTES TO INDEPENDENT COMPONENT ANALYSIS; CONTRASTS AND GEOMETRY , 2001 .

[7]  L. Lathauwer,et al.  Fetal electrocardiogram extraction by source subspace separation , 1995 .

[8]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[9]  Dinh Tuan Pham,et al.  Blind separation of instantaneous mixture of sources via the Gaussian mutual information criterion , 2000, 2000 10th European Signal Processing Conference.

[10]  Gilles Burel,et al.  Blind separation of sources: A nonlinear neural algorithm , 1992, Neural Networks.

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Dinh Tuan Pham,et al.  Separation of a mixture of independent sources through a maximum likelihood approach , 1992 .

[13]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[14]  Andreas Ziehe,et al.  Blind separation of post-nonlinear mixtures using gaussianizing transformations and temporal decorrelation , 2003 .

[15]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[16]  T. Sejnowski,et al.  Separation of post-nonlinear mixtures using ACE and temporal decorrelation , 2001 .

[17]  Larry Wasserman,et al.  All of Statistics , 2004 .

[18]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[19]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[20]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[21]  Juha Karhunen,et al.  Nonlinear Independent Component Analysis Using Ensemble Learning: Experiments and Discussion , 2000 .

[22]  K. Jarrod Millman,et al.  Learning Sparse Codes with a Mixture-of-Gaussians Prior , 1999, NIPS.

[23]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[24]  Andreas Ziehe,et al.  Blind Source Separation Techniques for Decomposing Event-Related Brain Signals , 2004, Int. J. Bifurc. Chaos.

[25]  Aapo Hyvärinen,et al.  Blind source separation by nonstationarity of variance: a cumulant-based approach , 2001, IEEE Trans. Neural Networks.

[26]  Dinh Tuan Pham,et al.  Joint Approximate Diagonalization of Positive Definite Hermitian Matrices , 2000, SIAM J. Matrix Anal. Appl..

[27]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[28]  Juha Karhunen,et al.  A Maximum Likelihood Approach to Nonlinear Blind Source Separation , 1997, ICANN.

[29]  Andrzej Cichocki,et al.  Information-theoretic approach to blind separation of sources in non-linear mixture , 1998, Signal Process..

[30]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[31]  Luís B. Almeida,et al.  Separating a Real-Life Nonlinear Mixture of Images , 2004, ICA.

[32]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[33]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[34]  Motoaki Kawanabe,et al.  Kernel-Based Nonlinear Blind Source Separation , 2003, Neural Computation.

[35]  Yehoshua Y. Zeevi,et al.  Quasi Maximum Likelihood Blind Deconvolution of Images Using Optimal Sparse Representations , 2003 .

[36]  Klaus-Robert Müller,et al.  Robust ICA for Super-Gaussian Sources , 2004 .

[37]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[38]  D. Obradovic,et al.  Information Maximization and Independent Component Analysis: Is There a Difference? , 1998, Neural Computation.

[39]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[40]  Terrence J. Sejnowski,et al.  Nonlinear blind source separation using kernel feature spaces , 2001 .

[41]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[42]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[43]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[44]  Julio Ortega Lopera,et al.  Separation of sources: A geometry-based procedure for reconstruction of n-valued signals , 1995, Signal Process..

[45]  Motoaki Kawanabe,et al.  Kernel Feature Spaces and Nonlinear Blind Souce Separation , 2001, NIPS.

[46]  Antti Honkela,et al.  Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method , 2004, ICA.

[47]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[48]  A. Hyvarinen,et al.  One-unit contrast functions for independent component analysis: a statistical analysis , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[49]  Andreas Ziehe,et al.  A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..

[50]  Antti Honkela,et al.  Bayesian Non-Linear Independent Component Analysis by Multi-Layer Perceptrons , 2000 .

[51]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[52]  Jean-François Cardoso,et al.  Dependence, Correlation and Gaussianity in Independent Component Analysis , 2003, J. Mach. Learn. Res..

[53]  Motoaki Kawanabe,et al.  Estimating the Reliability of ICA Projections , 2001, NIPS.

[54]  J. Hérault,et al.  Réseau de neurones à synapses modifiables: décodage de messages sensoriels composites par apprentissage non supervisé et permanent , 1984 .

[55]  Motoaki Kawanabe,et al.  Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation , 2003, J. Mach. Learn. Res..

[56]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[57]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[58]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[59]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[60]  Luís B. Almeida,et al.  Linear and nonlinear ICA based on mutual information - the MISEP method , 2004, Signal Process..

[61]  A. Hyvärinen,et al.  Nonlinear Blind Source Separation by Self-Organizing Maps , 1996 .

[62]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[63]  Te-Won Lee,et al.  Blind source separation of nonlinear mixing models , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[64]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[65]  Klaus-Robert Müller,et al.  From outliers to prototypes: Ordering data , 2006, Neurocomputing.

[66]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[67]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[68]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 2019, Wiley Series in Probability and Statistics.

[69]  Stefan Harmeling,et al.  Technical report on implementation of linear methods and validation on acoustic sources , 2003 .

[70]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[71]  Juan K. Lin,et al.  Faithful Representation of Separable Distributions , 1997, Neural Computation.

[72]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[73]  Motoaki Kawanabe,et al.  A resampling approach to estimate the stability of one-dimensional or multidimensional independent components , 2002, IEEE Transactions on Biomedical Engineering.

[74]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[75]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[76]  Dinh Tuan Pham,et al.  BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .

[77]  Klaus-Robert Müller,et al.  Inlier‐based ICA with an application to superimposed images , 2005, Int. J. Imaging Syst. Technol..

[78]  Masahiro Oya,et al.  Blind Separation of Sources Using Temporal Correlation of the Observed Signals , 1997 .

[79]  Christian Jutten,et al.  Technical Report on Separation Methods for Nonlinear Mixtures , 2003 .

[80]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[81]  Aapo Hyvärinen,et al.  Estimating Overcomplete Independent Component Bases for Image Windows , 2002, Journal of Mathematical Imaging and Vision.

[82]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[83]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[84]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[85]  Erkki Oja,et al.  DETECTING PROCESS STATE CHANGES BY NONLINEAR BLIND SOURCE SEPARATION , 2003 .

[86]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.

[87]  Pei Ling Lai,et al.  Ica Using Kernel Canonical Correlation Analysis , 2000 .

[88]  Dinh-Tuan Pham,et al.  Independent Component Analysis: Separation of non-stationary sources: algorithms and performance , 2001 .

[89]  Klaus-Robert Müller,et al.  Injecting noise for analysing the stability of ICA components , 2004, Signal Process..

[90]  Barak A. Pearlmutter,et al.  Hard-LOST: modified k-means for oriented lines , 2004 .

[91]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[92]  Stefan Harmeling,et al.  ANALYSING ICA COMPONENTS BY INJECTING NOISE , 2003 .

[93]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[94]  Barak A. Pearlmutter,et al.  Soft-LOST: EM on a Mixture of Oriented Lines , 2004, ICA.

[95]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[96]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[97]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[98]  Shun-ichi Amari,et al.  Neural Learning in Structured Parameter Spaces - Natural Riemannian Gradient , 1996, NIPS.