A novel separation-sensing membrane performing precise real-time serum analysis during blood drawing.

Dynamic and on-site analysis of serum from human blood is crucial particularly for making decisions during clinical surgery and emergency treatments. However, state-of-the-art blood assay methods can only collect single or discrete data of physiological analytes, remaining great challenge in online report of dynamic fluctuation of key analytes. Here we propose a novel separation-sensing membrane by constructing a heterogeneous-nanostructured architecture in which a surface nanoporous layer continuously extracts serum and underneath biosensing nanochannels dynamically recognize biotargets, achieving continuous testing of vital clinical indices as blood drawn. Through precisely controlling the pore structure and nanoshape of biosensing crystals, this membrane achieved accurate and online monitor of glucose and lactate in patients from variety of medical scenarios within 1 min which is one order of magnitude faster than the state-of-the-art techniques. Moreover, various kinds of bio-recognizers can be introduced into this membrane, realizing accurate determinations of glutamate, transaminase and cancer biomarker. This separation-sensing membrane provides a versatile platform for online and dynamic clinical diagnosis.

[1]  Nan Zhu,et al.  Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst , 2013 .

[2]  Hirosuke Kobayashi,et al.  Evaluation of the Biocompatibility of Dialysis Membranes , 2015, Blood Purification.

[3]  J. Laplanche,et al.  Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease , 2016, Science Translational Medicine.

[4]  J. Durner Die klinische Chemie – Herausforderung der Medizin für die analytische Chemie und die Nanowissenschaften , 2010 .

[5]  Milin Peng,et al.  Relative efficacy and safety of early lactate clearance-guided therapy resuscitation in patients with sepsis , 2019, Medicine.

[6]  Y. Long,et al.  Electrochemical Sensing at a Confined Space. , 2020, Analytical chemistry.

[7]  Mitchell M. Levy,et al.  The Surviving Sepsis Campaign Bundle: 2018 update , 2018, Intensive Care Medicine.

[8]  W. Jin,et al.  Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. , 2017, Biosensors & bioelectronics.

[9]  F. LaFerla,et al.  Synaptic Impairment in Alzheimer’s Disease: A Dysregulated Symphony , 2017, Trends in Neurosciences.

[10]  Sandra Montmany,et al.  Comparación de la mortalidad evitable de un trauma center americano vs. un centro de referencia europeo , 2017 .

[11]  W. Bowen,et al.  Electrokinetic effects in membrane pores and the determination of zeta-potential , 1998 .

[12]  S. Słomkowski,et al.  Hydrophobic Protein−Polypyrrole Interactions: The Role of van der Waals and Lewis Acid−Base Forces As Determined by Contact Angle Measurements , 2002 .

[13]  Y. Long,et al.  Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. , 2019, Angewandte Chemie.

[14]  W. Jin,et al.  A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. , 2013, Nanoscale.

[15]  T. Barratt,et al.  STEROID-RESPONSIVE NEPHROTIC SYNDROME: A GENERALISED DISORDER OF MEMBRANE NEGATIVE CHARGE , 1985, The Lancet.

[16]  T. Uemura,et al.  Fabrication of two-dimensional polymer arrays: template synthesis of polypyrrole between redox-active coordination nanoslits. , 2008, Angewandte Chemie.

[17]  Sandeep Kumar Jha,et al.  Smartphone based optical biosensor for the detection of urea in saliva , 2018, Sensors and Actuators B: Chemical.

[18]  N. Donaldson,et al.  Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study , 2002, The Lancet.

[19]  X. Lou,et al.  Formation of Polypyrrole-Coated Sb2 Se3 Microclips with Enhanced Sodium-Storage Properties. , 2018, Angewandte Chemie.

[20]  Andrew Ustianowski,et al.  Tropical infectious diseases: Diagnostics for the developing world , 2004, Nature Reviews Microbiology.

[21]  R. Vanholder,et al.  Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions , 2012, Nature Reviews Nephrology.

[22]  Shekhar Bhansali,et al.  Lung cancer and its early detection using biomarker-based biosensors. , 2011, Chemical reviews.

[23]  G. Phillips,et al.  A model from electron microscopy for the molecular structure of fibrinogen and fibrin , 1981, Nature.

[24]  X. Lou,et al.  Formation of Polypyrrole-Coated Sb2 Se3 Microclips with Enhanced Sodium-Storage Properties. , 2018, Angewandte Chemie.

[25]  A. Baeumner,et al.  Nanocontainers for analytical applications. , 2019, Angewandte Chemie.

[26]  A. Baeumner,et al.  Nanocontainer in der Analytik , 2019, Angewandte Chemie.

[27]  J. Chao,et al.  Facile Synthesis of a MoS2-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. , 2017, ACS applied materials & interfaces.

[28]  W. Al-Soud,et al.  Purification and Characterization of PCR-Inhibitory Components in Blood Cells , 2001, Journal of Clinical Microbiology.

[29]  N. Heaton,et al.  Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. , 2000, Diabetes.

[30]  Xiaoxiao Liu,et al.  Constructing Hierarchical Tectorum-like α-Fe2 O3 /PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. , 2017, Angewandte Chemie.

[31]  Wei Liu,et al.  Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis , 2019, Nature Communications.

[32]  F. Besenbacher,et al.  Electrochemical approach for constructing a monolayer of thiophenolates from grafted multilayers of diaryl disulfides. , 2007, Journal of the American Chemical Society.

[33]  Eva Navas,et al.  Accepted Manuscript , 2022 .

[34]  Ashley N. D. Meyer,et al.  The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations , 2014, BMJ quality & safety.

[35]  Jürgen Durner,et al.  Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine. , 2009, Angewandte Chemie.

[36]  Ru-Jia Yu,et al.  Detektieren mit Nanopipetten im eingeschränkten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle , 2019, Angewandte Chemie.