Experimental validation of a statistical model for the Wöhler field corresponding to any stress level and amplitude

Two sets of fatigue data corresponding to two different materials, a low-alloy steel 42CrMo4 and an aluminum alloy AlMgSi1 are used to validate a fatigue model, applicable to any combination of stress levels and ranges, formerly proposed by the authors. The results seem to confirm the applicability of the model showing its capability to provide linear and non-linear trends for the S–N curves that fit well, respectively, to the real data of the 42CrMo4 steel alloy and the AlMgSi1 aluminum alloy, including the percentile curve shapes.

[1]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[2]  Enrique Castillo Extreme value theory in engineering , 1988 .

[3]  Laurens de Haan,et al.  On large deviation for extremes , 2003 .

[4]  Ali S. Hadi,et al.  Extreme Value and Related Models with Applications in Engineering and Science , 2004 .

[5]  Enrique Castillo,et al.  A Parametric Lifetime Model for the Prediction of High‐Cycle Fatigue Based on Stress Level and Amplitude , 2006 .

[6]  E. Castillo Extreme value and related models with applications in engineering and science , 2005 .

[7]  Ali S. Hadi,et al.  A fatigue model with local sensitivity analysis , 2007 .

[8]  Alfonso Fernández-Canteli,et al.  A general model for fatigue damage due to any stress history , 2008 .

[9]  E Haibach,et al.  Some Considerations in the Statistical Determination of the Shape of S-N Curves , 1981 .

[10]  Arvid Naess,et al.  Estimating Confidence Intervals of Long Return Period Design Values by Bootstrapping , 2002 .

[11]  Ali S. Hadi,et al.  Modeling lifetime data with application to fatigue models , 1995 .

[12]  Enrique Castillo,et al.  Specimen length effect on parameter estimation in modelling fatigue strength by Weibull distribution , 2006 .

[13]  Alfonso Fernández-Canteli,et al.  A statistical fatigue model covering the tension and compression Wöhler fields , 2009 .

[14]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[15]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[16]  W. Schütz Prof. Dr.‐Ing. Erwin Haibach Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung , 1991 .

[17]  Ali S. Hadi,et al.  On fitting a fatigue model to data , 1999 .

[18]  Fa Bastenaire,et al.  NEW METHOD FOR THE STATISTICAL EVALUATION OF CONSTANT STRESS AMPLITUDE FATIGUE-TEST RESULTS , 1971 .

[19]  Enrique Castillo,et al.  Lifetime regression models based on a functional equation of physical nature , 1987, Journal of Applied Probability.