Kinetic connectivity of rectangles

We develop a kinetic data structure (KDS) for maintaining the connectivity of a set of axis-aligned rectangles moving in the plane. In the kinetic framework, each rectangle is assumed to travel along a low-degree algebraic path, specified by a flight plan-if the flight plan changes, the data structure is informed about it. The connectivity of rectangles changes only at discrete moments, given by the times when the order of rectangles along either axis changes. Our main result is a kinetic data structure of size O(n log n) that requires O(log2 n) amortized time for each update, and answers connectivity queries in worst-case time O(log n/ log log n).

[1]  David Eppstein,et al.  Corrigendum: Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph. , 1993 .

[2]  Leonidas J. Guibas,et al.  Intersecting Line Segments, Ray Shooting, and Other Applications of Geometric Partitioning Techniques , 1988, SWAT.

[3]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[4]  Takao Asano,et al.  Finding the Connected Components and a Maximum Clique of an Intersection Graph of Rectangles in the Plane , 1983, J. Algorithms.

[5]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[6]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[7]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.

[8]  Monika Henzinger,et al.  Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[11]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[12]  David Eppstein,et al.  Maintenance of a minimum spanning forest in a dynamic planar graph , 1990, SODA '90.

[13]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.