Numerical Construction of Multipartite Entanglement Witnesses

Entanglement in multipartite systems is a key resource for quantum information and communication protocols, making its verification in complex systems a necessity. Because an exact calculation of arbitrary entanglement probes is impossible, we derive and implement a numerical method to construct multipartite witnesses to uncover entanglement in arbitrary systems. Our technique is based on a substantial generalization of the power iteration, an essential tool for computing eigenvalues, and it is a solver for the separability eigenvalue equations, enabling the general formulation of optimal entanglement witnesses. Beyond our rigorous derivation and direct implementation of this method, we also apply our approach to several examples of complexly quantum-correlated states and benchmark its general performance. Consequently, we provide an generally applicable numerical tool for the identification of multipartite entanglement.

[1]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[2]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[3]  P. Horodecki,et al.  Tensor product extension of entanglement witnesses and their connection with measurement-device-independent entanglement witnesses , 2014, 1403.3711.

[4]  Reinaldo O. Vianna,et al.  Robust semidefinite programming approach to the separability problem (5 pages) , 2004 .

[5]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[6]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[7]  J. Sperling,et al.  Verifying continuous-variable entanglement in finite spaces , 2008, 0809.3197.

[8]  I. Walmsley,et al.  Quasiprobability representation of quantum coherence , 2018, Physical Review A.

[9]  I. Walmsley,et al.  Separable and Inseparable Quantum Trajectories. , 2017, Physical review letters.

[10]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[11]  C. Fabre,et al.  Multipartite Entanglement of a Two-Separable State. , 2016, Physical review letters.

[12]  J. Smolin Four-party unlockable bound entangled state , 2000, quant-ph/0001001.

[13]  W. Vogel,et al.  Entanglement witnesses for indistinguishable particles , 2015, 1501.02595.

[14]  M. Ku's,et al.  Universal framework for entanglement detection , 2013, 1306.2376.

[15]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[18]  J. C. Loredo,et al.  Ultrafine Entanglement Witnessing. , 2016, Physical review letters.

[19]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[20]  Yonina C. Eldar A semidefinite programming approach to optimal unambiguous discrimination of quantumstates , 2003, IEEE Trans. Inf. Theory.

[21]  C. Macchiavello,et al.  Witnessing entanglement in hybrid systems , 2014, 1404.6083.

[22]  W. Vogel,et al.  Representation of entanglement by negative quasiprobabilities , 2009 .

[23]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[24]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[25]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[26]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[27]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[28]  P. Parrilo,et al.  Detecting multipartite entanglement , 2004, quant-ph/0407143.

[29]  G. Tóth,et al.  Detecting genuine multipartite entanglement with two local measurements. , 2004, Physical review letters.

[30]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[31]  I. Walmsley,et al.  Entanglement in macroscopic systems , 2016, 1611.06028.

[32]  M. Horodecki,et al.  BOUND ENTANGLEMENT CAN BE ACTIVATED , 1998, quant-ph/9806058.

[33]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[34]  J. Sperling,et al.  Structural quantification of entanglement. , 2014, Physical review letters.

[35]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[36]  T. Moroder,et al.  Entanglement witnesses for graph states: General theory and examples , 2011, 1106.1114.

[37]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[38]  J. Sperling,et al.  Displaced photon-number entanglement tests , 2017, 1707.01707.

[39]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[40]  Géza Tóth,et al.  Experimental analysis of a four-qubit photon cluster state. , 2005, Physical review letters.

[41]  Geza Toth Entanglement witnesses in spin models , 2005 .

[42]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[43]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[44]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[45]  F. Brandão,et al.  Witnessed Entanglement , 2004, quant-ph/0405096.

[47]  W. Vogel,et al.  Necessary and sufficient conditions for bipartite entanglement , 2008, 0805.1318.

[48]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[49]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[50]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[51]  Simone Severini,et al.  Characterization and properties of weakly optimal entanglement witnesses , 2014, Quantum Inf. Comput..

[52]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[53]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[54]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[55]  B. De Moor,et al.  Optimizing completely positive maps using semidefinite programming , 2002 .

[56]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[57]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[58]  J. Sperling,et al.  Determination of the Schmidt number , 2011, 1103.1287.

[59]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[60]  Florian Mintert,et al.  Hierarchies of multipartite entanglement. , 2013, Physical review letters.

[61]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[62]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[63]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[64]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[65]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[66]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[67]  M. B. Plenio,et al.  When are correlations quantum?—verification and quantification of entanglement by simple measurements , 2006 .

[68]  J. Sperling,et al.  Multipartite entanglement witnesses. , 2013, Physical review letters.

[69]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[70]  Technology,et al.  Extremal entanglement witnesses , 2013, 1305.2385.

[71]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[72]  Y. Cai,et al.  Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.

[73]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[74]  C. Fabre,et al.  Full multipartite entanglement of frequency-comb Gaussian states. , 2014, Physical review letters.

[75]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[76]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[77]  M. Bohmann,et al.  Verifying bound entanglement of dephased Werner states , 2017, 1708.03109.

[78]  Multivariate polynomial positivity test efficiency improvement , 1979, Proceedings of the IEEE.

[79]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.