A neuro-fuzzy monitoring system: Application to flexible production systems

The multiple reconfiguration and the complexity of the modern production system lead to design intelligent monitoring aid systems. Accordingly, the use of neuro-fuzzy technics seems very promising. In this paper, we propose a new monitoring aid system composed by a dynamic neural network detection tool and a neuro-fuzzy diagnosis tool. Learning capabilities due to the neural structure permit us to update the monitoring aid system. The neuro-fuzzy network provides an abductive diagnosis. Moreover it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. At the end, we illustrate the industrial usefulness of the proposed dynamic neurofuzzy monitoring system trough a flexible production system monitoring application.

[1]  Laurent Troma Surveillance et diagnostic de systemes industriels complexes : une approche hybride numerique/symbolique , 2000 .

[2]  Mordechai Ben-Menachem,et al.  Writing effective use cases , 2001, SOEN.

[3]  Jean-Cédric Chappelier,et al.  RST: A Connectionist Architecture to Deal with Spatiotemporal Relationships , 1998, Neural Computation.

[4]  Noureddine Zerhouni,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA.

[5]  Ah Chung Tsoi,et al.  Locally recurrent globally feedforward networks: a critical review of architectures , 1994, IEEE Trans. Neural Networks.

[6]  Ivar Jacobson,et al.  The unified modeling language reference manual , 2010 .

[7]  Lily R. Liang,et al.  Inference via Fuzzy Belief Networks , 2002, CAINE.

[8]  Noureddine Zerhouni,et al.  Utilisation des réseaux de neurones temporels pour le pronostic et la surveillance dynamique. Etude comparative de trois réseaux de neurones récurrents , 2005, Rev. d'Intelligence Artif..

[9]  Pascal Roques UML in Practice: The Art of Modeling Software Systems Demonstrated through Worked Examples and Solutions , 2004 .

[10]  J. Reggia,et al.  Abductive Inference Models for Diagnostic Problem-Solving , 1990, Symbolic Computation.

[11]  Z. Ryad,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[12]  Yannick Pencolé Diagnostic décentralisé de systèmes à événements discrets : application aux réseaux de télécommunications , 2002 .

[13]  Noureddine Zerhouni,et al.  DIAGNOSIS METHODS USING ARTIFICIAL INTELLIGENCE. APPLICATION OF FUZZY PETRI NETS AND NEURO-FUZZY SYSTEMS , 2004 .

[14]  Venkat Venkatasubramanian,et al.  Challenges in the industrial applications of fault diagnostic systems , 2000 .

[15]  Noureddine Zerhouni,et al.  Recurrent radial basis function network for time-series prediction , 2003 .

[16]  Michael R. Berthold,et al.  Boosting the Performance of RBF Networks with Dynamic Decay Adjustment , 1994, NIPS.

[17]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[18]  Craig Larman,et al.  Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process , 2001 .