A Kernel-Based Embedding Method and Convergence Analysis for Surfaces PDEs

We analyze a least-squares strong-form kernel collocation formulation for solving second-order elliptic PDEs on smooth, connected, and compact surfaces with bounded geometry. The methods do not require any partial derivatives of surface normal vectors or metric. Based on some standard smoothness assumptions for high-order convergence, we provide the sufficient denseness conditions on the collocation points to ensure the methods are convergent. In addition to some convergence verifications, we also simulate some reaction-diffusion equations to exhibit the pattern formations.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  Siraj ul-Islam,et al.  Siraj Ul-Islam , 2018 .

[4]  F. J. Narcowich,et al.  Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .

[5]  P K Maini,et al.  A two-dimensional numerical study of spatial pattern formation in interacting Turing systems , 1999, Bulletin of mathematical biology.

[6]  María Cruz López de Silanes,et al.  Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data , 2012, Numerische Mathematik.

[7]  Steven J. Ruuth,et al.  A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..

[8]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[9]  Grady B. Wright,et al.  Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..

[10]  Joseph D. Ward,et al.  An inverse theorem for compact Lipschitz regions in ℝd using localized kernel bases , 2015, Math. Comput..

[11]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[12]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[13]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[14]  Guangming Yao,et al.  A Comparative Study of Global and Local Meshless Methods for Diffusion-Reaction Equation , 2010 .

[15]  R A Barrio,et al.  Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Colin B. Macdonald,et al.  Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..

[17]  N. Yoshida Sobolev spaces on a Riemannian manifold and their equivalence , 1992 .

[18]  Colin B. Macdonald,et al.  The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces , 2013, SIAM J. Sci. Comput..

[19]  María Cruz López de Silanes,et al.  An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing , 2007, Numerische Mathematik.

[20]  Robert Schaback,et al.  On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..

[21]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[22]  Xin An,et al.  Local RBFs Based Collocation Methods for Unsteady Navier-Stokes Equations , 2015 .

[23]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[24]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[25]  Robert Schaback,et al.  Sampling and Stability , 2008, MMCS.

[26]  T. Hangelbroek,et al.  Kernel Approximation on Manifolds II: The L∞ Norm of the L2 Projector , 2010, SIAM J. Math. Anal..

[27]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[28]  W. R. Madych,et al.  An estimate for multivariate interpolation II , 2006, J. Approx. Theory.

[29]  Steven J. Ruuth,et al.  The Stability of Localized Spot Patterns for the Brusselator on the Sphere , 2014, SIAM J. Appl. Dyn. Syst..

[30]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[31]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[32]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[33]  Joseph D. Ward,et al.  Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant , 2009, SIAM J. Math. Anal..

[34]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[35]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .

[36]  Holger Wendland,et al.  Meshless Collocation: Error Estimates with Application to Dynamical Systems , 2007, SIAM J. Numer. Anal..

[37]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[38]  Colin B. Macdonald,et al.  Spatially Partitioned Embedded Runge-Kutta Methods , 2013, SIAM J. Numer. Anal..

[39]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[40]  M. Urner Scattered Data Approximation , 2016 .

[41]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.