A Kernel-Based Embedding Method and Convergence Analysis for Surfaces PDEs
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] Tsuyoshi Murata,et al. {m , 1934, ACML.
[3] Siraj ul-Islam,et al. Siraj Ul-Islam , 2018 .
[4] F. J. Narcowich,et al. Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .
[5] P K Maini,et al. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems , 1999, Bulletin of mathematical biology.
[6] María Cruz López de Silanes,et al. Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data , 2012, Numerische Mathematik.
[7] Steven J. Ruuth,et al. A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..
[8] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[9] Grady B. Wright,et al. Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..
[10] Joseph D. Ward,et al. An inverse theorem for compact Lipschitz regions in ℝd using localized kernel bases , 2015, Math. Comput..
[11] Steven J. Ruuth,et al. A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..
[12] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[13] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .
[14] Guangming Yao,et al. A Comparative Study of Global and Local Meshless Methods for Diffusion-Reaction Equation , 2010 .
[15] R A Barrio,et al. Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[16] Colin B. Macdonald,et al. Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..
[17] N. Yoshida. Sobolev spaces on a Riemannian manifold and their equivalence , 1992 .
[18] Colin B. Macdonald,et al. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces , 2013, SIAM J. Sci. Comput..
[19] María Cruz López de Silanes,et al. An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing , 2007, Numerische Mathematik.
[20] Robert Schaback,et al. On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..
[21] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[22] Xin An,et al. Local RBFs Based Collocation Methods for Unsteady Navier-Stokes Equations , 2015 .
[23] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[24] Cécile Piret,et al. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..
[25] Robert Schaback,et al. Sampling and Stability , 2008, MMCS.
[26] T. Hangelbroek,et al. Kernel Approximation on Manifolds II: The L∞ Norm of the L2 Projector , 2010, SIAM J. Math. Anal..
[27] D. Barkley. A model for fast computer simulation of waves in excitable media , 1991 .
[28] W. R. Madych,et al. An estimate for multivariate interpolation II , 2006, J. Approx. Theory.
[29] Steven J. Ruuth,et al. The Stability of Localized Spot Patterns for the Brusselator on the Sphere , 2014, SIAM J. Appl. Dyn. Syst..
[30] Holger Wendland,et al. Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..
[31] Colin B. Macdonald,et al. The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..
[32] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[33] Joseph D. Ward,et al. Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant , 2009, SIAM J. Math. Anal..
[34] Holger Wendland,et al. Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .
[35] R. Strichartz. Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .
[36] Holger Wendland,et al. Meshless Collocation: Error Estimates with Application to Dynamical Systems , 2007, SIAM J. Numer. Anal..
[37] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[38] Colin B. Macdonald,et al. Spatially Partitioned Embedded Runge-Kutta Methods , 2013, SIAM J. Numer. Anal..
[39] Zhonghai Ding,et al. A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .
[40] M. Urner. Scattered Data Approximation , 2016 .
[41] Grady B. Wright,et al. A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.