Hole mobility enhancement in In0.41Ga0.59Sb quantum-well field-effect transistors
暂无分享,去创建一个
J. B. Boos | L. Xia | B. R. Bennett | M. Ancona | J. Alamo
[1] G. Arlt,et al. Piezoelectricity in III-V Compounds with a Phenomenological Analysis of the Piezoelectric Effect , 1968, January 1.
[2] Y. Kanda,et al. A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.
[3] D. A. Fraser,et al. The physics of semiconductor devices , 1986 .
[4] Shreepad Karmalkar,et al. A new equivalent MOSFET representation of a HEMT to analytically model nonlinear charge control for simulation of HEMT devices and circuits , 1997 .
[5] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[6] P. Solomon,et al. Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .
[7] 安達 定雄. Handbook on physical properties of semiconductors , 2004 .
[8] Mario G. Ancona,et al. High mobility p-channel HFETs using strained Sb-based materials , 2007 .
[9] J. B. Boos,et al. Mobility enhancement in strained p-InGaSb quantum wells , 2007 .
[10] Mario G. Ancona,et al. Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications , 2008, IEICE Trans. Electron..
[11] L. Xia,et al. Impact of 110 uniaxial strain on n-channel In0.15Ga0.85As high electron mobility transistors , 2009 .
[12] K. Saraswat,et al. Study of piezoresistance under unixial stress for technologically relevant III-V semiconductors using wafer bending experiments , 2010 .
[14] K. Ng,et al. The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.