Design of bandwidth-efficient unequal error protection LDPC codes

This paper presents a strategy for the design of bandwidth-efficient LDPC codes with unequal error protection. Bandwidth efficiency is obtained by appropriately designing the codes for higher order constellations, assuming an AWGN channel. The irregularities of the LDPC code are designed, using the Gaussian approximation of the density evolution, to enhance the unequal error protection property of the code as well as account for the different bit error probabilities given by the higher order constellation. The proposed code design algorithm is flexible in terms of the number and proportions of protection classes. It also allows arbitrary modulation schemes. Our method combines the design of unequal error protection LDPC codes for the binary input AWGN channel with the code design for higher order constellations by dividing the variable node degree distribution into sub-degree distributions for each protection class and each level of protection from the modulation. The results show that appropriate code design for higher order constellations reduces the overall bit-error rate significantly. Furthermore, the unequal error protection capability of the code is increased, especially for high SNR.

[1]  D. Wubben,et al.  On EXIT-charts for space-time block codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[4]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[5]  John G. Proakis,et al.  Digital Communications , 1983 .

[6]  Krishna R. Narayanan,et al.  Design of low-density parity-check (LDPC) codes for high order constellations , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[7]  William E. Ryan,et al.  Bit-reliability mapping in LDPC-coded modulation systems , 2005, IEEE Communications Letters.

[8]  Simon Litsyn,et al.  Improved decoding of LDPC coded modulations , 2006, IEEE Communications Letters.

[9]  Neele von Deetzen,et al.  On the UEP Capabilities of Several LDPC Construction Algorithms , 2010, IEEE Transactions on Communications.

[10]  Olgica Milenkovic,et al.  On unequal error protection LDPC codes based on Plotkin-type constructions , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[11]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[12]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[13]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[14]  Dejan Vukobratovic,et al.  Generalized ACE Constrained Progressive Edge-Growth LDPC Code Design , 2008, IEEE Communications Letters.

[15]  David Declercq,et al.  Enhancement of Unequal Error Protection Properties of LDPC Codes , 2007, EURASIP J. Wirel. Commun. Netw..

[16]  G. Ungerboeck,et al.  Trellis-coded modulation with redundant signal sets Part I: Introduction , 1987, IEEE Communications Magazine.

[17]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[18]  David Declercq,et al.  Optimization of LDPC codes for UEP channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Masoud Ardakani,et al.  LDPC Code Design for Nonuniform Power-Line Channels , 2007, EURASIP J. Adv. Signal Process..

[20]  David Declercq,et al.  Check-Irregular LDPC Codes for Unequal Error Protection under Iterative Decoding , 2006 .

[21]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[22]  Paul H. Siegel,et al.  Multilevel coding with low-density parity-check component codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[23]  Amir H. Banihashemi,et al.  Reliability-based coded modulation with low-density parity-check codes , 2006, IEEE Transactions on Communications.

[24]  Kenta Kasai,et al.  Detailed representation of irregular LDPC code ensembles and density evolution , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[25]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[26]  Nazanin Rahnavard,et al.  Unequal Error Protection Using Partially Regular LDPC Codes , 2007, IEEE Transactions on Communications.

[27]  G. Ungerboeck,et al.  Trellis-coded modulation with redundant signal sets Part II: State of the art , 1987, IEEE Communications Magazine.

[28]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[29]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[30]  Masoud Salehi,et al.  Turbo Coded Modulation for Unequal Error Protection , 2008, IEEE Transactions on Communications.

[31]  K. Fazel,et al.  Combined multilevel coding and multiresolution modulation , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[32]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.