An Adjoint Characterization of the Category of Sets

If a category B with Yoneda embedding Y: B CAT(BOP, set) has an adjoint string, U H V H W H X H Y, then B is equivalent to set.

[1]  Ross Street,et al.  Yoneda structures on 2-categories , 1978 .

[2]  F. Foltz Légitimité des catégories de préfaisceaux , 1979 .

[3]  R. Street Notions of topos , 1981, Bulletin of the Australian Mathematical Society.

[4]  R. J. Wood Some remarks on total categories , 1982 .

[5]  Idempotents in bicategories , 1989, Bulletin of the Australian Mathematical Society.

[6]  R. J. Wood,et al.  Constructive complete distributivity. I , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Robert D. Rosebrugh,et al.  Constructive complete distributivity IV , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.