A description of the diamond grid for topological and combinatorial analysis

Abstract We define a new topological (combinatorial) coordinate system for all cells (voxels, faces, edges and vertices) in the diamond grid. Topological relations between cells (incidence and adjacency relations) can easily be retrieved from the coordinate values, through simple integer operations. This makes the coordinate system apt for implementation in various applications, such as morphological and topological operations in image processing and shape analysis. We present an application to boundary tracking and computation of the Euler characteristic.

[1]  Robin Strand,et al.  Non-Traditional Grids Embedded in Zn , 2008, Int. J. Shape Model..

[2]  P. R. Meyer,et al.  Computer graphics and connected topologies on finite ordered sets , 1990 .

[3]  David Eppstein,et al.  Isometric Diamond Subgraphs , 2008, GD.

[4]  Benedek Nagy Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids , 2014, Annals of Mathematics and Artificial Intelligence.

[5]  Vitaliy Kurlin,et al.  Relaxed Disk Packing , 2015, CCCG.

[6]  Rocío González-Díaz,et al.  3D well-composed polyhedral complexes , 2015, Discret. Appl. Math..

[7]  B. Nagy,et al.  A topological coordinate system for the diamond cubic grid. , 2016, Acta crystallographica. Section A, Foundations and advances.

[8]  Gilles Bertrand,et al.  Collapses and Watersheds in Pseudomanifolds of Arbitrary Dimension , 2014, Journal of Mathematical Imaging and Vision.

[9]  Benedek Nagy,et al.  A Combinatorial 4-Coordinate System for the Diamond Grid , 2015, ISMM.

[10]  Leila De Floriani,et al.  Modeling and Manipulating Cell Complexes in Two, Three and Higher Dimensions , 2012 .

[11]  Gabor T. Herman,et al.  Geometry of digital spaces , 1998, Optics & Photonics.

[12]  Innchyn Her,et al.  Geometric transformations on the hexagonal grid , 1995, IEEE Trans. Image Process..

[13]  Benedek Nagy,et al.  A combinatorial 3-coordinate system for the face centered cubic grid , 2015, 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA).

[14]  Jayanthi Sivaswamy,et al.  Hexagonal Image Processing: A Practical Approach , 2014, Advances in Pattern Recognition.

[15]  Benedek Nagy,et al.  A combinatorial coordinate system for the body-centered cubic grid , 2016, Graph. Model..

[16]  Daniel Weiskopf,et al.  On visual quality of optimal 3D sampling and reconstruction , 2007, GI '07.

[17]  Minho Kim,et al.  Analysis of symmetry groups of box-splines for evaluation on GPUs , 2017, Graph. Model..

[18]  R. Forman Morse Theory for Cell Complexes , 1998 .

[19]  Benedek Nagy,et al.  A topological 4-coordinate system for the face centered cubic grid , 2016, Pattern Recognit. Lett..

[20]  Gunilla Borgefors,et al.  Digital distance functions on three-dimensional grids , 2011, Theor. Comput. Sci..

[21]  Christian Roux,et al.  Determination of discrete sampling grids with optimal topological and spectral properties , 1996, DGCI.

[22]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[23]  Chao Chen,et al.  Efficient Computation of Persistent Homology for Cubical Data , 2012 .

[24]  Paola Magillo,et al.  Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system , 2019, Inf. Sci..

[25]  Balázs Csébfalvi An Evaluation of Prefiltered B-Spline Reconstruction for Quasi-Interpolation on the Body-Centered Cubic Lattice , 2010, IEEE Transactions on Visualization and Computer Graphics.

[26]  Péter Kardos,et al.  Topology-preserving hexagonal thinning , 2013, Int. J. Comput. Math..

[27]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[28]  Jacques-Olivier Lachaud Coding cells of digital spaces: a framework to write generic digital topology algorithms , 2003, Electron. Notes Discret. Math..