The VoicePrivacy 2020 Challenge: Results and findings

[1]  Emmanuel Vincent,et al.  The VoicePrivacy 2020 Challenge Evaluation Plan , 2022, ArXiv.

[2]  Driss Matrouf,et al.  Towards a unified assessment framework of speech pseudonymisation , 2022, Comput. Speech Lang..

[3]  Marc Tommasi,et al.  Retrieving Speaker Information from Personalized Acoustic Models for Speech Recognition , 2021, ArXiv.

[4]  Marc Tommasi,et al.  Privacy Attacks for Automatic Speech Recognition Acoustic Models in A Federated Learning Framework , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  E. Vincent,et al.  Privacy and Utility of X-Vector Based Speaker Anonymization , 2022, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[6]  Nils Peters,et al.  Exploring the Importance of F0 Trajectories for Speaker Anonymization using X-vectors and Neural Waveform Models , 2021 .

[7]  Jean-François Bonastre,et al.  Anonymous Speaker Clusters: Making Distinctions Between Anonymised Speech Recordings with Clustering Interface , 2021, Interspeech 2021.

[8]  Denis Jouvet,et al.  A Study of F0 Modification for X-Vector Based Speech Pseudonymization Across Gender , 2021 .

[9]  Hitoshi Kiya,et al.  Lightweight Voice Anonymization Based on Data-Driven Optimization of Cascaded Voice Modification Modules , 2021, 2021 IEEE Spoken Language Technology Workshop (SLT).

[10]  Nicholas Evans,et al.  Speaker anonymisation using the McAdams coefficient , 2020, Interspeech.

[11]  Supplementary material to the paper The VoicePrivacy 2020 Challenge: Results and findings , 2022 .

[12]  Madhu R. Kamble,et al.  Design of Voice Privacy System using Linear Prediction , 2020, 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).

[13]  Luis A. Hernández Gómez,et al.  Speaker De-identification System using Autoencodersand Adversarial Training , 2020, ArXiv.

[14]  Ivan Martinovic,et al.  Speaker Anonymization with Distribution-Preserving X-Vector Generation for the VoicePrivacy Challenge 2020 , 2020, ArXiv.

[15]  Masashi Unoki,et al.  X-Vector Singular Value Modification and Statistical-Based Decomposition with Ensemble Regression Modeling for Speaker Anonymization System , 2020, INTERSPEECH.

[16]  Marc Tommasi,et al.  A Comparative Study of Speech Anonymization Metrics , 2020, INTERSPEECH.

[17]  Driss Matrouf,et al.  Speech Pseudonymisation Assessment Using Voice Similarity Matrices , 2020, INTERSPEECH.

[18]  Hamed Haddadi,et al.  Privacy-preserving Voice Analysis via Disentangled Representations , 2020, CCSW@CCS.

[19]  Junichi Yamagishi,et al.  The Privacy ZEBRA: Zero Evidence Biometric Recognition Assessment , 2020, INTERSPEECH.

[20]  Marc Tommasi,et al.  Design Choices for X-vector Based Speaker Anonymization , 2020, INTERSPEECH.

[21]  Junichi Yamagishi,et al.  Introducing the VoicePrivacy Initiative , 2020, INTERSPEECH.

[22]  Félix Gontier,et al.  Privacy Aware Acoustic Scene Synthesis Using Deep Spectral Feature Inversion , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  R. V. Son Adjustable Deterministic Pseudonymization of Speech Listening Experiment, Report of listening experiments , 2020 .

[24]  Masatoshi Yoshikawa,et al.  Voice-Indistinguishability: Protecting Voiceprint In Privacy-Preserving Speech Data Release , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[25]  E. Vincent,et al.  Evaluating Voice Conversion-Based Privacy Protection against Informed Attackers , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  D. Jouvet,et al.  Speaker information modification in the VoicePrivacy 2020 toolchain , 2020 .

[27]  E. Vincent,et al.  Post-evaluation analysis for the VoicePrivacy 2020Challenge: Using anonymized speech data to train attackmodels and ASR , 2020 .

[28]  M. Magimai.-Doss,et al.  Adjustable Deterministic Pseudonymisation of Speech: Idiap-NKI’s submission to VoicePrivacy 2020 Challenge , 2020 .

[29]  M. Yoshikawa,et al.  System Description for Voice Privacy Challenge , 2020 .

[30]  Chien-Lin Huang Analysis of PingAn Submission in the VoicePrivacy 2020 Challenge , 2020 .

[31]  Dongsuk Yook,et al.  Speaker Anonymization for Personal Information Protection Using Voice Conversion Techniques , 2020, IEEE Access.

[32]  Junichi Yamagishi,et al.  CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit (version 0.92) , 2019 .

[33]  Nicholas W. D. Evans,et al.  Preserving privacy in speaker and speech characterisation , 2019, Comput. Speech Lang..

[34]  Juan Pablo Bello,et al.  Voice Anonymization in Urban Sound Recordings , 2019, 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP).

[35]  Marc Tommasi,et al.  Privacy-Preserving Adversarial Representation Learning in ASR: Reality or Illusion? , 2019, INTERSPEECH.

[36]  Xin Wang,et al.  Neural Harmonic-plus-Noise Waveform Model with Trainable Maximum Voice Frequency for Text-to-Speech Synthesis , 2019, ArXiv.

[37]  Isabel Trancoso,et al.  The GDPR & Speech Data: Reflections of Legal and Technology Communities, First Steps towards a Common Understanding , 2019, INTERSPEECH.

[38]  Junichi Yamagishi,et al.  Speaker Anonymization Using X-vector and Neural Waveform Models , 2019, 10th ISCA Workshop on Speech Synthesis (SSW 10).

[39]  Yifan Gong,et al.  Encrypted Speech Recognition Using Deep Polynomial Networks , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[40]  Heiga Zen,et al.  LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech , 2019, INTERSPEECH.

[41]  Joseph Dureau,et al.  Federated Learning for Keyword Spotting , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[42]  Linlin Chen,et al.  Hidebehind: Enjoy Voice Input with Voiceprint Unclonability and Anonymity , 2018, SenSys.

[43]  Ahmad-Reza Sadeghi,et al.  VoiceGuard: Secure and Private Speech Processing , 2018, INTERSPEECH.

[44]  Yiming Wang,et al.  Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks , 2018, INTERSPEECH.

[45]  John H. L. Hansen,et al.  Convolutional Neural Network Based Speaker De-Identification , 2018, Odyssey.

[46]  Joon Son Chung,et al.  VoxCeleb2: Deep Speaker Recognition , 2018, INTERSPEECH.

[47]  Xiang-Yang Li,et al.  Towards Privacy-Preserving Speech Data Publishing , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[48]  Sanjeev Khudanpur,et al.  X-Vectors: Robust DNN Embeddings for Speaker Recognition , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[49]  Yu Wang,et al.  VoiceMask: Anonymize and Sanitize Voice Input on Mobile Devices , 2017, ArXiv.

[50]  Daniel Erro,et al.  Reversible speaker de-identification using pre-trained transformation functions , 2017, Comput. Speech Lang..

[51]  John R. Hershey,et al.  Hybrid CTC/Attention Architecture for End-to-End Speech Recognition , 2017, IEEE Journal of Selected Topics in Signal Processing.

[52]  Bhuvana Ramabhadran,et al.  Bias and Statistical Significance in Evaluating Speech Synthesis with Mean Opinion Scores , 2017, INTERSPEECH.

[53]  Ann Cavoukian,et al.  “Global privacy and security, by design: Turning the “privacy vs. security” paradigm on its head” , 2017 .

[54]  Joon Son Chung,et al.  VoxCeleb: A Large-Scale Speaker Identification Dataset , 2017, INTERSPEECH.

[55]  Junichi Yamagishi,et al.  SUPERSEDED - CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit , 2016 .

[56]  Masanori Morise,et al.  WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications , 2016, IEICE Trans. Inf. Syst..

[57]  Junichi Yamagishi,et al.  Privacy-preserving sound to degrade automatic speaker verification performance , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[58]  Sanjeev Khudanpur,et al.  Librispeech: An ASR corpus based on public domain audio books , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[59]  Sanjeev Khudanpur,et al.  A time delay neural network architecture for efficient modeling of long temporal contexts , 2015, INTERSPEECH.

[60]  Miran Pobar,et al.  Online speaker de-identification using voice transformation , 2014, 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[61]  Bhiksha Raj,et al.  Privacy-preserving speech processing: cryptographic and string-matching frameworks show promise , 2013, IEEE Signal Processing Magazine.

[62]  Daniel Povey,et al.  The Kaldi Speech Recognition Toolkit , 2011 .

[63]  Tanja Schultz,et al.  Speaker de-identification via voice transformation , 2009, 2009 IEEE Workshop on Automatic Speech Recognition & Understanding.

[64]  Ninghui Li,et al.  On the tradeoff between privacy and utility in data publishing , 2009, KDD.

[65]  Qin Yan,et al.  Cross-entropic comparison of formants of British, Australian and American English accents , 2008, Speech Commun..

[66]  Joaquín González-Rodríguez,et al.  Cross-entropy analysis of the information in forensic speaker recognition , 2008, Odyssey.

[67]  Niko Brümmer,et al.  Application-independent evaluation of speaker detection , 2006, Comput. Speech Lang..

[68]  P. Antonelli,et al.  Privacy and security of medical information. , 2002, Otolaryngologic clinics of North America.

[69]  J. Hintze,et al.  Violin plots : A box plot-density trace synergism , 1998 .

[70]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[71]  Eric Moulines,et al.  Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones , 1989, Speech Commun..

[72]  Stephen McAdams,et al.  Spectral fusion, spectral parsing and the formation of auditory images , 1984 .

[73]  Jae S. Lim,et al.  Signal estimation from modified short-time Fourier transform , 1983, ICASSP.