Sample Moduli for Set-Indexed Gaussian Processes

On etudie le comportement de la trajectoire de processus Gaussiens Wp indexes par des classes C de sous-ensembles d'un espace de probabilite (X, #7B-A, P)

[1]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[2]  M. Donsker Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems , 1952 .

[3]  R. Pyke Probability, Statistics and Analysis: A uniform central limit theorem for partial-sum processes indexed by sets , 1983 .

[4]  Richard M. Dudley,et al.  Sample Functions of the Gaussian Process , 1973 .

[5]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[6]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[7]  D. Slepian The one-sided barrier problem for Gaussian noise , 1962 .

[8]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[9]  R. Pyke,et al.  A Uniform Central Limit Theorem for Set-Indexed Partial-Sum Processes with Finite Variance , 1986 .

[10]  C. Mueller A unification of Strassen's law and Lévy's modulus of continuity , 1981 .

[11]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[12]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[13]  R. Pyke,et al.  Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets , 1984 .

[14]  K. Alexander,et al.  Rates of growth and sample moduli for weighted empirical processes indexed by sets , 1987 .

[15]  Steven Orey,et al.  Sample Functions of the $N$-Parameter Wiener Process , 1973 .