Covariance matrix estimation for stationary time series

We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz (1911)'s idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms of the covariances. We develop a large deviation result for quadratic forms of stationary processes using m-dependence approximation, under the framework of causal representation and physical dependence measures.

[1]  Han Xiao,et al.  Asymptotic Inference of Autocovariances of Stationary Processes , 2011, 1105.3423.

[2]  Han Xiao,et al.  Supplement to “ Covariance Matrix Estimation for Stationary Time Series ” , 2011 .

[3]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[4]  D. Politis,et al.  Banded and tapered estimates for autocovariance matrices and the linear process bootstrap , 2010 .

[5]  Victor Solo,et al.  On Random Matrix Theory for stationary processes , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  Magda Peligrad,et al.  Central limit theorem for fourier transforms of stationary processes. , 2009, 0910.3451.

[7]  Weidong Liu,et al.  CRAMÉR-TYPE MODERATE DEVIATION FOR THE MAXIMUM OF THE PERIODOGRAM WITH APPLICATION TO SIMULTANEOUS TESTS IN GENE EXPRESSION TIME SERIES1 , 2010 .

[8]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[9]  Weidong Liu,et al.  ASYMPTOTICS OF SPECTRAL DENSITY ESTIMATES , 2009, Econometric Theory.

[10]  Q. Shao,et al.  Cram\'{e}r Type Moderate Deviation for the Maximum of the Periodogram with Application to Simultaneous Tests in Gene Expression Time Series , 2009, 0908.1145.

[11]  E. Rio Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions , 2009 .

[12]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[13]  M. Pourahmadi,et al.  BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES , 2009 .

[14]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[15]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[16]  Zhengyan Lin,et al.  On maxima of periodograms of stationary processes , 2008, 0801.1357.

[17]  W. Wu,et al.  MODERATE DEVIATIONS FOR STATIONARY PROCESSES , 2008 .

[18]  V. V. Petrov,et al.  On Large Deviations of Sums of Independent Random Variables , 2007 .

[19]  Y. Kakizawa,et al.  Moderate deviations for quadratic forms in Gaussian stationary processes , 2007 .

[20]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[21]  X. Shao,et al.  Asymptotic spectral theory for nonlinear time series , 2006, math/0611029.

[22]  Arnaud Guillin,et al.  Moderate deviations of empirical periodogram and non-linear functionals of moving average processes , 2006 .

[23]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Noureddine El Karoui,et al.  Recent Results About the Largest Eigenvalue of Random Covariance Matrices and Statistical Application , 2005 .

[25]  D. Politis Adaptive bandwidth choice , 2003 .

[26]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[27]  M. Zani Large Deviations for Quadratic Forms of Locally Stationary Processes , 2002 .

[28]  Arnold J Stromberg,et al.  Subsampling , 2001, Technometrics.

[29]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[30]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[31]  B. Bercu,et al.  Sharp large deviations for gaussian quadratic forms with applications , 2000 .

[32]  Fabrice Gamboa,et al.  A functional large deviations principle for quadratic forms of Gaussian stationary processes , 1999 .

[33]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[34]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[35]  B. Bercu,et al.  Large deviations for quadratic forms of stationary Gaussian processes , 1997 .

[36]  P. Bühlmann,et al.  Block length selection in the bootstrap for time series , 1999 .

[37]  A. Dembo,et al.  Large Deviations for Quadratic Functionals of Gaussian Processes , 1993 .

[38]  Z. D. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[39]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[40]  L. Saulis,et al.  Limit theorems for large deviations , 1991 .

[41]  A STABILITY RESULT FOR THE PERIODOGRAM , 1990 .

[42]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[43]  D. Burkholder Sharp inequalities for martingales and stochastic integrals , 1988 .

[44]  K. F. Turkman,et al.  On the asymptotic distributions of maxima of trigonometric polynomials with random coefficients , 1984, Advances in Applied Probability.

[45]  Donald W. K. Andrews,et al.  Non-strong mixing autoregressive processes , 1984, Journal of Applied Probability.

[46]  E. Haeusler An exact rate of convergence in the functional central limit theorem for special martingale difference arrays , 1984 .

[47]  K. F. Turkman,et al.  ON THE ASYMPTOTIC DISTRIBUTIONS OF MAXIMA OF TRIGONOMETRIC POLYNOMIALS WITH , 1984 .

[48]  E. J. Hannan,et al.  The maximum of the periodogram , 1983 .

[49]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[50]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[51]  R. K. Adenstedt,et al.  On Large-Sample Estimation for the Mean of a Stationary Random Sequence , 1974 .

[52]  P. Heywood Trigonometric Series , 1968, Nature.

[53]  John W. Van Ness,et al.  The Maximum Deviation of Sample Spectral Densities , 1967 .

[54]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[55]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[56]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[57]  Otto Toeplitz,et al.  Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .