Increased capacity per unit-cost by oversampling

It is demonstrated that doubling the sampling rate recovers some of the loss in capacity incurred on the bandlimited Gaussian channel with a one-bit output quantizer.

[1]  F. David A note on the evaluation of the multivariate normal integral , 1953 .

[2]  S. Gupta Probability Integrals of Multivariate Normal and Multivariate $t^1$ , 1963 .

[3]  W. Rudin Real and complex analysis , 1968 .

[4]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[5]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[6]  Robert J. McEliece,et al.  The Theory of Information and Coding , 1979 .

[7]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[8]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Edgar N. Gilbert Increased information rate by oversampling , 1993, IEEE Trans. Inf. Theory.

[11]  Shlomo Shamai Information rates by oversampling the sign of a bandlimited process , 1994, IEEE Trans. Inf. Theory.

[12]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Upamanyu Madhow,et al.  Transceiver Design with Low-Precision Analog-to-Digital Conversion : An Information-Theoretic Perspective , 2008, ArXiv.

[15]  Upamanyu Madhow,et al.  On the limits of communication with low-precision analog-to-digital conversion at the receiver , 2009, IEEE Transactions on Communications.

[16]  Amos Lapidoth,et al.  A Foundation In Digital Communication: Index , 2009 .

[17]  Joseph Lipka,et al.  A Table of Integrals , 2010 .