High-order transverse schemes for the numerical solution of PDEs

Many existing numerical schemes for the solution of initial-boundary value problems for partial differential equations can be derived by the method of lines. The PDEs are converted into a system of ordinary differential equations either with initial conditions (longitudinal scheme) or with boundary conditions (transverse scheme). In particular, this paper studies the performance of the transverse scheme in combination with boundary value methods. Moreover, we do not restrict the semi-discretization by the usual first- or second-order finite-difference approximations to replace the derivative with respect to time, but we use high-order formulae.

[1]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[2]  Donato Trigiante,et al.  Boundary value methods and BV-stability in the solution of initial value problems , 1993 .

[3]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[4]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[5]  John J. H. Miller On the Stability of Differential Equations , 1972 .

[6]  Donato Trigiante,et al.  High-order multistep methods for boundary value problems , 1995 .

[7]  J. G. Verwer,et al.  Boundary value techniques for initial value problems in ordinary differential equations , 1983 .

[8]  Francesca Mazzia,et al.  Convergence and Stability of Multistep Methods Solving Nonlinear Initial Value Problems , 1997, SIAM J. Sci. Comput..

[9]  J. M. Sanz-Serna,et al.  Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations , 1987 .

[10]  Richard M. Beam,et al.  The Asymptotic Spectra of Banded Toeplitz and Quasi-Toeplitz Matrices , 1993, SIAM J. Sci. Comput..

[11]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[12]  Michail Diamantakis The NUMOL solution of time-dependent PDEs using DESI Runge-Kutta formulae , 1995 .

[13]  F. W. J. Olver,et al.  Numerical solution of second-order linear difference equations , 1967 .

[14]  J. Reiter A biplicit spectral‐collocation‐type ansatz for the numerical integration of partial differential equations with the transversal method of lines , 1995 .

[15]  Pierluigi Amodio,et al.  A boundary value approach to the numerical solution of initial value problems by multistep methos , 1995 .

[16]  L. Shampine ODE solvers and the method of lines , 1994 .

[17]  William E. Schiesser The numerical method of lines , 1991 .

[18]  Donato Trigiante,et al.  A new mesh selection strategy for ODEs , 1997 .

[19]  Pierluigi Amodio,et al.  Parallel implementation of block boundary value methods for ODEs , 1997 .

[20]  Bertil Gustafsson,et al.  Fourth-order difference methods for hyperbolic IBVPs , 1995 .

[21]  Marcin Paprzycki,et al.  Parallel Solution of Almost Block Diagonal Systems on a Hypercube , 1996 .

[22]  Donato Trigiante,et al.  Convergence and stability of boundary value methods for ordinary differential equations , 1996 .

[23]  D. Trigiante,et al.  Stability and convergence of boundary value methods for solving ODE , 1995 .

[24]  Stephen J. Wright Stable Parallel Algorithms for Two-Point Boundary Value Problems , 1992, SIAM J. Sci. Comput..

[25]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.