A fresh take on 'Barker dynamics' for MCMC.

We study a recently introduced gradient-based Markov chain Monte Carlo method based on 'Barker dynamics'. We provide a full derivation of the method from first principles, placing it within a wider class of continuous-time Markov jump processes. We then evaluate the Barker approach numerically on a challenging ill-conditioned logistic regression example with imbalanced data, showing in particular that the algorithm is remarkably robust to irregularity (in this case a high degree of skew) in the target distribution.

[1]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[2]  É. Moulines,et al.  Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.

[3]  James Ridgway,et al.  Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation , 2015, 1506.08640.

[4]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[5]  Samuel Power,et al.  Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes , 2019 .

[6]  Mark A. Girolami,et al.  Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions , 2014, Entropy.

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  Giacomo Zanella,et al.  Informed Proposals for Local MCMC in Discrete Spaces , 2017, Journal of the American Statistical Association.

[9]  G. Roberts,et al.  Kinetic energy choice in Hamiltonian/hybrid Monte Carlo , 2017, Biometrika.

[10]  É. Moulines,et al.  The tamed unadjusted Langevin algorithm , 2017, Stochastic Processes and their Applications.

[11]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[12]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[13]  Arnak S. Dalalyan,et al.  User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient , 2017, Stochastic Processes and their Applications.

[14]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[15]  Aaron Smith,et al.  MCMC for Imbalanced Categorical Data , 2016, Journal of the American Statistical Association.

[16]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[17]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[18]  Giacomo Zanella,et al.  The Barker proposal: combining robustness and efficiency in gradient-based MCMC , 2019 .

[19]  A. Azzalini,et al.  Some properties of skew-symmetric distributions , 2010, 1012.4710.

[20]  Yee Whye Teh,et al.  Relativistic Monte Carlo , 2016, AISTATS.

[21]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[22]  Martin J. Wainwright,et al.  Log-concave sampling: Metropolis-Hastings algorithms are fast! , 2018, COLT.

[23]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .