A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes

This paper addresses truss topology optimization taking into account robustness to uncertainty in the truss geometry. Specifically, the locations of nodes are assumed not to be known precisely and the compliance in the worst case is attempted to be minimized. We formulate a semidefinite programming problem that serves as a safe approximation of this robust optimization problem. That is, any feasible solution of the presented semidefinite programming problem satisfies the constraints of the original robust optimization problem. Since a semidefinite programming problem can be solved efficiently with a primal-dual interior-point method, we can find a robust truss design efficiently with the proposed semidefinite programming approach. A notable property of the proposed approach is that the obtained truss is guaranteed to be stable. Numerical experiments are performed to illustrate that the optimal truss topology depends on the magnitude of uncertainty.

[1]  Izuru Takewaki,et al.  Semidefinite programming for uncertain linear equations in static analysis of structures , 2008 .

[2]  Tibor Tarnai,et al.  Infinitesimal and Finite Mechanisms , 2001 .

[3]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  Izuru Takewaki,et al.  Semidefinite programming for dynamic steady-state analysis of structures under uncertain harmonic loads , 2008 .

[6]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[7]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[8]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  D. J. H. Garling,et al.  The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by J. Michael Steele , 2005, Am. Math. Mon..

[11]  Andrej Cherkaev,et al.  Minimax optimization problem of structural design , 2008 .

[12]  Marco Lombardi,et al.  OPTIMIZATION OF UNCERTAIN STRUCTURES USING NON-PROBABILISTIC MODELS , 1998 .

[13]  James K. Guest,et al.  Robust topology optimization of structures with uncertainties in stiffness - Application to truss structures , 2011 .

[14]  Xu Guo,et al.  Confidence structural robust design and optimization under stiffness and load uncertainties , 2009 .

[15]  Giuseppe Carlo Calafiore,et al.  Optimization under uncertainty with applications to design of truss structures , 2008 .

[16]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[17]  Lesley F. Wright,et al.  Information Gap Decision Theory: Decisions under Severe Uncertainty , 2004 .

[18]  Chris P. Pantelides,et al.  Design of Trusses under Uncertain Loads Using Convex Models , 1998 .

[19]  John E. Mottershead,et al.  A review of robust optimal design and its application in dynamics , 2005 .

[20]  M. Diehl,et al.  Robust topology optimization accounting for misplacement of material , 2012, Structural and Multidisciplinary Optimization.

[21]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[22]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[23]  Xu Guo,et al.  Confidence structural robust optimization by non‐linear semidefinite programming‐based single‐level formulation , 2011 .

[24]  Ole Sigmund,et al.  Manufacturing tolerant topology optimization , 2009 .

[25]  James K. Guest,et al.  Structural optimization under uncertain loads and nodal locations , 2008 .

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Xu Guo,et al.  A mixed integer programming for robust truss topology optimization with stress constraints , 2010 .

[28]  Yoshihiro Kanno,et al.  Global optimization of robust truss topology via mixed integer semidefinite programming , 2010 .

[29]  Hiroshi Yamashita,et al.  Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming , 2012, Math. Program..

[30]  Daniel A. Tortorelli,et al.  Minmax topology optimization , 2012 .

[31]  G. Allaire,et al.  Shape and topology optimization of the robust compliance via the level set method , 2008 .

[32]  G. I. Schuëller,et al.  Developments in stochastic structural mechanics , 2006 .

[33]  C. Pantelides,et al.  Optimum structural design via convex model superposition , 2000 .

[34]  Y. Kanno,et al.  Sequential Semidefinite Program for Maximum Robustness Design of Structures under Load Uncertainty , 2006 .

[35]  James K. Guest,et al.  Reliability-based Topology Optimization of Trusses with Stochastic Stiffness , 2013 .

[36]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[37]  Pierre Apkarian,et al.  Partially Augmented Lagrangian Method for Matrix Inequality Constraints , 2004, SIAM J. Optim..

[38]  E. Kuznetsov Underconstrained structural systems , 1991 .

[39]  Wolfgang Achtziger,et al.  Structural Topology Optimization with Eigenvalues , 2007, SIAM J. Optim..

[40]  S. Pellegrino Structural computations with the singular value decomposition of the equilibrium matrix , 1993 .

[41]  Y. Kanno,et al.  Sequential Semidefinite Program for Robust Truss Optimization based on Robustness Functions associat , 2004 .

[42]  A. Takezawa,et al.  Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system , 2011 .

[43]  Gang-Won Jang,et al.  Topology optimization of MEMS considering etching uncertainties using the level‐set method , 2012 .

[44]  Xu Guo,et al.  Robust structural topology optimization considering boundary uncertainties , 2013 .

[45]  F. Jarre An Interior Method for Nonconvex Semidefinite Programs , 2000 .

[46]  Wei Chen,et al.  A new level-set based approach to shape and topology optimization under geometric uncertainty , 2010 .

[47]  O. Sigmund,et al.  Topology optimization considering material and geometric uncertainties using stochastic collocation methods , 2012 .

[48]  R. Haftka,et al.  Structural design under bounded uncertainty-optimization with anti-optimization , 1994 .

[49]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[50]  Andrej Cherkaev,et al.  Principal Compliance and Robust Optimal Design , 2003 .

[51]  S. Pellegrino,et al.  Matrix analysis of statically and kinematically indeterminate frameworks , 1986 .

[52]  Masao Fukushima,et al.  Successive Linearization Methods for Nonlinear Semidefinite Programs , 2005, Comput. Optim. Appl..

[53]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[54]  Giuseppe Cala Ellipsoidal bounds for uncertain linear equations and dynamical systems , 2004 .

[55]  O. Sigmund,et al.  Robust topology optimization accounting for spatially varying manufacturing errors , 2011 .

[56]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[57]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[58]  Y. Ben-Haim Information-gap decision theory : decisions under severe uncertainty , 2001 .

[59]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[60]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[61]  James K. Guest,et al.  Optimal design of trusses with geometric imperfections: Accounting for global instability , 2011 .

[62]  N. Katoh,et al.  Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints , 1999 .

[63]  Mattias Schevenels,et al.  Topology optimization with geometric uncertainties by perturbation techniques , 2012 .