Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.

Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.

[1]  A. Arof,et al.  FTIR studies of chitosan acetate based polymer electrolytes , 2003 .

[2]  K. Chiu,et al.  Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder , 2014 .

[3]  Claudio Gerbaldi,et al.  Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes , 2010 .

[4]  Xiangyun Song,et al.  Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode , 2012 .

[5]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[6]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[7]  Wu Xu,et al.  Stability of polymer binders in Li–O2 batteries , 2013 .

[8]  H. Wagner Nanotube-polymer adhesion: a mechanics approach , 2002 .

[9]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[10]  K. S. Dhathathreyan,et al.  Functionalized Exfoliated Graphene Oxide as Supercapacitor Electrodes , 2012 .

[11]  Shu-Lei Chou,et al.  Small things make a big difference: binder effects on the performance of Li and Na batteries. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[12]  Liquan Chen,et al.  Micro-MoS2 with excellent reversible sodium-ion storage. , 2015, Chemistry.

[13]  S. Cartmell,et al.  Conductive polymers: towards a smart biomaterial for tissue engineering. , 2014, Acta biomaterialia.

[14]  Jiulin Wang,et al.  Carbonyl‐β‐Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries , 2013 .

[15]  Lei Wang,et al.  Enhanced Ion Conductivity in Conducting Polymer Binder for High‐Performance Silicon Anodes in Advanced Lithium‐Ion Batteries , 2018 .

[16]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[17]  Yi Cui,et al.  Improving the performance of lithium-sulfur batteries by conductive polymer coating. , 2011, ACS nano.

[18]  G. Stevens,et al.  Adhesion enhancement of polymer surfaces by atmospheric plasma treatment , 2001 .

[19]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[20]  Daniel J. Noelle,et al.  Using high‐HFP‐content cathode binder for mitigation of heat generation of lithium‐ion battery , 2017 .

[21]  D. Gardner,et al.  Adhesion Theories in Wood Adhesive Bonding , 2014 .

[22]  Xiaonong Chen,et al.  Enhanced performance of the sulfur cathode with L-cysteine-modified gelatin binder , 2013 .

[23]  A. Baldan Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment , 2004 .

[24]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[25]  M. Watanabe,et al.  Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries , 2016 .

[26]  A. Örnek Influences of different reaction mediums on the properties of high-voltage LiNiPO4@C cathode material in terms of dielectric heating efficiency , 2017 .

[27]  Taeeun Yim,et al.  Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes. , 2015, ACS applied materials & interfaces.

[28]  H. Maleki,et al.  Thermal Stability Studies of Li‐Ion Cells and Components , 1999 .

[29]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[30]  D. Guyomard,et al.  CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries , 2012 .

[31]  Hai-Bo Lu,et al.  Enhanced High-Temperature Performances of LiFePO4 Cathode with Polyacrylic Acid as Binder , 2012 .

[32]  H. Zhong,et al.  Water-Soluble Conductive Composite Binder Containing PEDOT:PSS as Conduction Promoting Agent for Si Anode of Lithium-Ion Batteries , 2014 .

[33]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Ashleigh M. Schwarz,et al.  Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes , 2016 .

[35]  V. Battaglia,et al.  Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[36]  C. Ferrara,et al.  Aqueous Processing of Na0.44MnO2 Cathode Material for the Development of Greener Na-Ion Batteries. , 2017, ACS applied materials & interfaces.

[37]  M. Ling,et al.  Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery. , 2012, ACS applied materials & interfaces.

[38]  Yaqin Huang,et al.  Chitosan as a functional additive for high-performance lithium–sulfur batteries , 2015 .

[39]  Kurt Binder,et al.  Polymers in Confined Environments , 1999 .

[40]  Jin-Young Son,et al.  Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. , 2012, ChemSusChem.

[41]  Xiaohong Yan,et al.  Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials , 2015 .

[42]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[43]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[44]  Taek-Soo Kim,et al.  Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. , 2014, Nano letters.

[45]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[46]  Joon Ching Juan,et al.  A review of polymer electrolytes: fundamental, approaches and applications , 2016, Ionics.

[47]  D. Wexler,et al.  Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. , 2011, Dalton transactions.

[48]  G. Fourche An overview of the basic aspects of polymer adhesion. Part I: Fundamentals , 1995 .

[49]  Young-Min Choi,et al.  Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries , 2006 .

[50]  J. Choi,et al.  Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries , 2017, Science.

[51]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[52]  Xiangyun Song,et al.  Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries , 2015 .

[53]  S. Wong,et al.  Mechanism of adhesion between polymer fibers at nanoscale contacts. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[54]  Yurij M. Volfkovich,et al.  Lithium Ion Batteries , 2015 .

[55]  Yang‐Kook Sun,et al.  The Application of Metal Sulfides in Sodium Ion Batteries , 2017 .

[56]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[57]  Hai-Bo Lu,et al.  Water-Soluble Polyacrylic Acid as a Binder for Sulfur Cathode in Lithium-Sulfur Battery , 2012 .

[58]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[59]  S. Pejovnik,et al.  Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study , 2003 .

[60]  Natasha A. Chernova,et al.  Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon , 2018, Journal of Solid State Electrochemistry.

[61]  Fei Du,et al.  Moving to Aqueous Binder: A Valid Approach to Achieving High‐Rate Capability and Long‐Term Durability for Sodium‐Ion Battery , 2018, Advanced science.

[62]  Youn-Sik Lee,et al.  Preparation of polypyrrole-coated silicon nanoparticles , 2006 .

[63]  Q. Qu,et al.  Tailoring the Interplay between Ternary Composite Binder and Graphite Anodes toward High-Rate and Long-Life Li-Ion Batteries , 2016 .

[64]  V. Presser,et al.  Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes , 2015 .

[65]  Won‐Jin Kwak,et al.  The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. , 2014, Chemical communications.

[66]  Peter D. Frischmann,et al.  Redox-Active Supramolecular Polymer Binders for Lithium–Sulfur Batteries That Adapt Their Transport Properties in Operando , 2016 .

[67]  Vincent A. Hackley,et al.  Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries , 2005 .

[68]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[69]  H. Gu,et al.  Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode , 2013 .

[70]  Dejun Qin,et al.  Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries , 2015 .

[71]  P. Biensan,et al.  Surface film formation on a carbonaceous electrode: Influence of the binder chemistry , 2009 .

[72]  Ming Jia,et al.  A comparative study of different binders and their effects on electrochemical properties of LiMn 2 O 4 cathode in lithium ion batteries , 2014 .

[73]  A. Pizzi,et al.  Wood‐induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding , 1994 .

[74]  Kristina Edström,et al.  Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES) , 2012 .

[75]  K. Ahn,et al.  Stress Development of Li-Ion Battery Anode Slurries during the Drying Process , 2015 .

[76]  Tao Zhang,et al.  Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries , 2018 .

[77]  U. Vaidya,et al.  Mechanisms of interfacial adhesion in metal–polymer composites – Effect of chemical treatment , 2011 .

[78]  S. Kirchmeyer,et al.  Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) , 2005 .

[79]  Xiaogang Zhang,et al.  Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery , 2017 .

[80]  Lain-Jong Li,et al.  Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity , 2013, Nature Communications.

[81]  Xingyi Zhou,et al.  Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. , 2017, Nano letters.

[82]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[83]  D. Guyomard,et al.  Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode , 2006 .

[84]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[85]  Xianzhong Sun,et al.  A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes , 2012, Journal of Solid State Electrochemistry.

[86]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[87]  Colin M. Burke,et al.  Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li-O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. , 2017, The journal of physical chemistry letters.

[88]  P. Simon,et al.  Electrode compositions for carbon power supercapacitors , 1999 .

[89]  Xiangyun Song,et al.  Dual-functional gum arabic binder for silicon anodes in lithium ion batteries , 2015 .

[90]  Wenlong Cai,et al.  A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium–sulfur batteries , 2015 .

[91]  S. Ramesh,et al.  Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number , 2013, Cellulose.

[92]  C. Auschra,et al.  Wetting and dispersing agents , 2002 .

[93]  S. Komaba,et al.  High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries , 2012 .

[94]  Ying Bai,et al.  Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries. , 2018, ACS applied materials & interfaces.

[95]  In-Byeong Kang,et al.  Flexible Display Technology – Opportunity and Challenges to New Business Application , 2009 .

[96]  V. Wood,et al.  Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators. , 2016, ACS applied materials & interfaces.

[97]  Isabela Reiniati,et al.  Surface properties and adhesion of wood fiber reinforced thermoplastic composites , 2007 .

[98]  Minh Hien Thi Nguyen,et al.  High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries , 2013 .

[99]  Jinghua Guo,et al.  Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery , 2017 .

[100]  Shanqing Zhang,et al.  The dual actions of modified polybenzimidazole in taming the polysulfide shuttle for long-life lithium–sulfur batteries , 2016 .

[101]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[102]  A. Manthiram,et al.  An Alternative Approach to Enhance the Performance of High Sulfur-Loading Electrodes for Li–S Batteries , 2016 .

[103]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[104]  Yong‐Mook Kang,et al.  Chemically Bonded Sn Nanoparticles Using the Crosslinked Epoxy Binder for High Energy‐Density Li Ion Battery , 2016 .

[105]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[106]  V. Battaglia,et al.  Toward an ideal polymer binder design for high-capacity battery anodes. , 2013, Journal of the American Chemical Society.

[107]  A. Manthiram,et al.  Electronic and Electrochemical Properties of Li1–xMn1.5Ni0.5O4 Spinel Cathodes As a Function of Lithium Content and Cation Ordering , 2015 .

[108]  Linda F. Nazar,et al.  Lithium-sulfur batteries , 2014 .

[109]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[110]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[111]  Hai-Bo Lu,et al.  Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder , 2012 .

[112]  Yi Cui,et al.  Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode , 2011 .

[113]  Xiqian Yu,et al.  Advanced Characterization Techniques for Sodium‐Ion Battery Studies , 2018 .

[114]  Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder , 2008 .

[115]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[116]  Yunhui Huang,et al.  Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery , 2015 .

[117]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[118]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[119]  C. Liang,et al.  Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery , 2017 .

[120]  Jian Ping Gong,et al.  Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. , 2013, Nature materials.

[121]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[122]  A. K. Cuentas-Gallegos,et al.  The Effect of Binder in Electrode Materials for Capacitance Improvement and EDLC Binder-free Cell Design , 2013 .

[123]  A. Epstein Electrical Conductivity in Conjugated Polymers , 1999 .

[124]  V. Battaglia,et al.  Investigation of surface effects through the application of the functional binders in lithium sulfur batteries , 2015 .

[125]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[126]  Weishan Li,et al.  Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder , 2009 .

[127]  Lele Peng,et al.  Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. , 2014, Nano letters.

[128]  Joonho Bae,et al.  Novel Flexible Supercapacitors Fabricated by Simple Integration of Electrodes, Binders, and Electrolytes into Glass Fibre Separators , 2014 .

[129]  Wei Chen,et al.  A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries , 2017, Nanoscale Research Letters.

[130]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[131]  Libin Liu,et al.  Review of recent achievements in self-healing conductive materials and their applications , 2017, Journal of Materials Science.

[132]  Jinghua Guo,et al.  Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder , 2017 .

[133]  Changxin Chen,et al.  Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries , 2016, Scientific Reports.

[134]  P. Simon,et al.  Polythiophene-based supercapacitors , 1999 .

[135]  JULIAN F. Johnson,et al.  Influence of molecular weight and molecular weight distribution on mechanical properties of polymers , 1982 .

[136]  Lei Qiu,et al.  Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. , 2014, Carbohydrate polymers.

[137]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[138]  A. Manthiram,et al.  An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium–Sulfur Batteries , 2016, Advanced materials.

[139]  Thomas Engel,et al.  The interaction of molecular and atomic oxygen with Si(100) and Si(111) , 1993 .

[140]  Young-Min Choi,et al.  Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance , 2005 .

[141]  Pengjian Zuo,et al.  Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder , 2010 .

[142]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[143]  Yaqin Huang,et al.  Influence of pH of Gelatin Solution on Cycle Performance of the Sulfur Cathode , 2010 .

[144]  J. D. Venables,et al.  Adhesion and durability of metal-polymer bonds , 1984 .

[145]  Jung-Min Oh,et al.  Ionomer Binders Can Improve Discharge Rate Capability in Lithium-Ion Battery Cathodes , 2011 .

[146]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[147]  J. Jean,et al.  Organic Distributions in Dried Alumina Green Tape , 2004 .

[148]  Wenzhi Li,et al.  A review of application of carbon nanotubes for lithium ion battery anode material , 2012 .

[149]  Shinichi Komaba,et al.  Study on polymer binders for high-capacity SiO negative electrode of Li-Ion batteries , 2011 .

[150]  N. Kumagai,et al.  Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries , 2012 .

[151]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[152]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[153]  D. Briggs XPS Studies of Polymer Surface Modifications and Adhesion Mechanisms , 1982 .

[154]  D. Aurbach,et al.  In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes , 2017 .

[155]  Donghui Long,et al.  Colloidal Synthesis of Silicon-Carbon Composite Material for Lithium-Ion Batteries. , 2017, Angewandte Chemie.

[156]  Taek-Soo Kim,et al.  Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries , 2014, Advanced materials.

[157]  Xingyi Zhou,et al.  Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. , 2017, Accounts of chemical research.

[158]  Jing Li,et al.  A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High‐Performance Lithium Ion Batteries , 2017, Advanced materials.

[159]  N. Kumagai,et al.  Influence of the binder types on the electrochemical characteristics of natural graphite electrode i , 2011 .

[160]  J. Youn,et al.  Interaction analysis between binder and particles in multiphase slurries. , 2013, The Analyst.

[161]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[162]  J. Mcbain,et al.  On Adhesives and Adhesive Action , 1924 .

[163]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[164]  Haryadi,et al.  Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT) , 2005 .

[165]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[166]  P. Zhou,et al.  Micro/nano-structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries , 2013, Journal of Applied Electrochemistry.

[167]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[168]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[169]  V. Srinivasan,et al.  Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes. , 2011, Angewandte Chemie.

[170]  Ling Huang,et al.  Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder , 2016 .

[171]  V. Battaglia,et al.  Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery , 2013 .

[172]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[173]  L. V. Morozova,et al.  Vinyl ethers with polysulfide and hydroxyl functions and polymers therefrom as binders for lithium–sulfur batteries , 2006 .

[174]  Jiulin Wang,et al.  Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. , 2016, Chemical communications.

[175]  Tao Sun,et al.  Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries , 2013 .

[176]  T. Jow,et al.  Poly(acrylonitrile-methyl methacrylate) as a non-fluorinated binder for the graphite anode of Li-ion batteries , 2003 .

[177]  Jie Liu,et al.  A Robust Ion‐Conductive Biopolymer as a Binder for Si Anodes of Lithium‐Ion Batteries , 2015 .

[178]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[179]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[180]  Q. Qu,et al.  Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries , 2013 .

[181]  Dong‐Won Kim,et al.  Graphite–silicon alloy composite anodes employing cross-linked poly(vinyl alcohol) binders for high-energy density lithium-ion batteries , 2016 .

[182]  S. Okada,et al.  In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries , 2016 .

[183]  Shengbo Zhang Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery , 2012 .

[184]  Taeyoung Kim,et al.  Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. , 2013, ACS nano.

[185]  Matthew M. Huie,et al.  Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes , 2016 .

[186]  Lei Zhang,et al.  An All‐Integrated Anode via Interlinked Chemical Bonding between Double‐Shelled–Yolk‐Structured Silicon and Binder for Lithium‐Ion Batteries , 2017, Advanced materials.

[187]  Jing Sun,et al.  Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries , 2008 .

[188]  M. Winter,et al.  Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries , 2015 .

[189]  D. K. Kim,et al.  High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials , 2014 .

[190]  Wei Zhang,et al.  Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries , 2017, Nanoscale Research Letters.

[191]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[192]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[193]  Li Wang,et al.  Nafion coated sulfur–carbon electrode for high performance lithium–sulfur batteries , 2014 .

[194]  Zonghai Chen,et al.  Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries , 2003 .

[195]  K. Edström,et al.  Iron‐Based Electrodes Meet Water‐Based Preparation, Fluorine‐Free Electrolyte and Binder: A Chance for More Sustainable Lithium‐Ion Batteries? , 2017, ChemSusChem.

[196]  Jung-Yong Lee,et al.  Wearable textile battery rechargeable by solar energy. , 2013, Nano letters.

[197]  Yu Chen,et al.  High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder , 2017 .

[198]  M. Winter,et al.  Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries , 2011 .

[199]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[200]  Li Lu,et al.  Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition , 2013, Scientific Reports.

[201]  Benhe Zhong,et al.  A functional binder–sulfonated poly(ether ether ketone) for sulfur cathode of Li–S batteries , 2016 .

[202]  Xingxing Gu,et al.  Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries , 2016 .

[203]  B. Lestriez Functions of polymers in composite electrodes of lithium ion batteries , 2010 .

[204]  M. Winter,et al.  Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery , 2013 .

[205]  Chia‐Chen Li,et al.  Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries , 2012 .

[206]  V. Battaglia,et al.  Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. , 2014, Nano letters.

[207]  Erhan Deniz,et al.  Dynamic Cross-Linking of Polymeric Binders Based on Host-Guest Interactions for Silicon Anodes in Lithium Ion Batteries. , 2015, ACS nano.

[208]  H. Pan,et al.  Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries , 2016, Scientific Reports.

[209]  P. Alderson,et al.  Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage , 2011 .

[210]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[211]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[212]  Yaqin Huang,et al.  Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge , 2009 .

[213]  G. Lei,et al.  A macaroni-like Li1.2V3O8 nanomaterial with high capacity for aqueous rechargeable lithium batteries , 2010 .

[214]  G. Hadziioannou,et al.  Topological polymer networks with sliding cross-link points : The sliding gels . Relationship between their molecular structure and the viscoelastic as well as the swelling properties , 2007 .

[215]  G. Lota,et al.  Carbon-Supported Manganese Dioxide as Electrode Material For Asymmetric Electrochemical Capacitors , 2014, International Journal of Electrochemical Science.

[216]  L. Léger,et al.  Adhesion mechanisms at soft polymer interfaces , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[217]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[218]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[219]  Byung-Seon Kong,et al.  Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries , 2011 .

[220]  Akira Harada,et al.  Complex formation between poly(ethylene glycol) and α-cyclodextrin , 1990 .

[221]  M. Behm,et al.  Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder. , 2016, ACS applied materials & interfaces.

[222]  Frank Y. Fan,et al.  Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes , 2017, Nature Communications.

[223]  Myung-Hyun Ryou,et al.  Large area multi-stacked lithium-ion batteries for flexible and rollable applications , 2014 .

[224]  Yaqin Huang,et al.  Improve Rate Capability of the Sulfur Cathode Using a Gelatin Binder , 2011 .

[225]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[226]  A. Manthiram,et al.  Nanostructured electrodes for next generation rechargeable electrochemical devices , 2004 .

[227]  Yao Zhou,et al.  Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density , 2017 .

[228]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[229]  Shi-gang Lu,et al.  Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries , 2012, International Journal of Minerals, Metallurgy, and Materials.

[230]  Xiangyun Song,et al.  Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance , 2012 .

[231]  J. Tarascon,et al.  In Situ Observation and Long-Term Reactivity of Si/C/CMC Composites Electrodes for Li-Ion Batteries , 2011 .

[232]  K. Liechti,et al.  The intrinsic toughness and adhesion mechanisms of a glass/epoxy interface , 1999 .

[233]  Mary Virginia Orna,et al.  Electrochemistry, past and present , 1989 .

[234]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[235]  Zaharaddeen S. Iro A Brief Review on Electrode Materials for Supercapacitor , 2016 .

[236]  A. Du,et al.  Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries , 2016 .

[237]  Youyuan Huang,et al.  The progress of novel binder as a non‐ignorable part to improve the performance of Si‐based anodes for Li‐ion batteries , 2018 .

[238]  Hung-Chun Wu,et al.  Enhanced High-Temperature Cycle-Life of Mesophase Graphite Anode with Styrene–Butadiene Rubber/Carboxymethyl Cellulose Binder , 2012 .

[239]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[240]  Y. Qu,et al.  Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. , 2015, ACS applied materials & interfaces.

[241]  Byung-Joo Kim,et al.  Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents , 2016 .

[242]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[243]  D. Aurbach,et al.  Influence of the PVdF binder on the stability of LiCoO2 electrodes , 2005 .

[244]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[245]  Y. Mai,et al.  Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites , 2008 .

[246]  E. Kelder,et al.  Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries , 2011 .

[247]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[248]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[249]  Chia‐Chen Li,et al.  A novel and efficient water-based composite binder for LiCoO2 cathodes in lithium-ion batteries , 2007 .

[250]  Qingyu Li,et al.  Effect of different binders on electrochemical properties of LiFePO4/C cathode material in lithium ion batteries , 2014 .

[251]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[252]  Andrea Scorzoni,et al.  Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic , 2007 .

[253]  Ye Shi,et al.  A Conductive Self-Healing Hybrid Gel Enabled by Metal-Ligand Supramolecule and Nanostructured Conductive Polymer. , 2015, Nano letters.

[254]  Takuzo Aida,et al.  Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking , 2018, Science.

[255]  T. Jow,et al.  Evaluation on a water-based binder for the graphite anode of Li-ion batteries , 2004 .

[256]  V. Satyanarayana,et al.  In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[257]  Shoji Yamaguchi,et al.  Interaction of Poly(vinylidene fluoride) with Graphite Particles. 2. Effect of Solvent Evaporation Kinetics and Chemical Properties of PVDF on the Surface Morphology of a Composite Film and Its Relation to Electrochemical Performance , 2004 .

[258]  Dong‐Won Kim,et al.  Improvement of the cycling performance of LiNi(0.6)Co(0.2)Mn(0.2)O(2) cathode active materials by a dual-conductive polymer coating. , 2014, ACS applied materials & interfaces.

[259]  A. F. Richter,et al.  Polyaniline: Doping, structure and derivatives , 1989 .

[260]  Shota Hashimoto,et al.  Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[261]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[262]  Soo-Jin Park,et al.  Synthesis and application of epoxy resins: A review , 2015 .

[263]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[264]  Myung-Hyun Ryou,et al.  Improved cycle lives of LiMn2O4 cathodes in lithium ion batteries by an alginate biopolymer from seaweed , 2013 .

[265]  N. Salem,et al.  Ionically-Functionalized Poly(thiophene) Conductive Polymers as Binders for Silicon and Graphite Anodes for Li-Ion Batteries , 2016 .

[266]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[267]  Taolei Sun,et al.  Aromatic Carbonyl Derivative Polymers as High‐Performance Li‐Ion Storage Materials , 2007 .

[268]  Fosong Wang,et al.  Significantly Raising the Cell Performance of Lithium Sulfur Battery via the Multifunctional Polyaniline Binder , 2017 .

[269]  Chumin Wang,et al.  Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach , 2014 .

[270]  A. Nakao,et al.  Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode , 2017 .

[271]  Robert Kostecki,et al.  Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles , 2001 .

[272]  L. Komsiyska,et al.  PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries , 2015 .

[273]  Boucar Diouf,et al.  Potential of lithium-ion batteries in renewable energy , 2015 .

[274]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[275]  Ji‐Guang Zhang,et al.  Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. , 2013, Nano letters.

[276]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[277]  V. Battaglia,et al.  A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natura , 2011 .

[278]  Naoki Nitta,et al.  Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries. , 2016, ACS applied materials & interfaces.

[279]  Minh Hien Thi Nguyen,et al.  Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries , 2013 .

[280]  N. Ohta,et al.  A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity , 2001 .

[281]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[282]  Enyue Zhao,et al.  Improved cycle stability of high-capacity Ni-rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 at high cut-off voltage by Li 2 SiO 3 coating , 2017 .

[283]  H. Zhong,et al.  Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries , 2014 .

[284]  Bryan W. Byles,et al.  The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries , 2016 .

[285]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[286]  L. Zhai,et al.  Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode , 2013 .

[287]  Joonwon Bae,et al.  A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery , 2013, Macromolecular Research.

[288]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[289]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[290]  Zhan Chen,et al.  Molecular level understanding of adhesion mechanisms at the epoxy/polymer interfaces. , 2012, ACS applied materials & interfaces.

[291]  Wei Chen,et al.  A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High‐Performance Sulfur Electrodes in Lithium‐Sulfur Battery , 2018 .

[292]  J. Qiao,et al.  Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries , 2017, Polymers.

[293]  Ling Huang,et al.  A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. , 2014, Chemical communications.

[294]  A. Harada,et al.  Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin , 1993 .

[295]  Kenville E. Hendrickson,et al.  Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. , 2015, Journal of the American Chemical Society.

[296]  V. Battaglia,et al.  Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application. , 2015, Nano letters.

[297]  K. Komvopoulos,et al.  Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries , 2016, Nature Communications.

[298]  Glenn C. Vogel,et al.  Four-parameter equation for predicting enthalpies of adduct formation , 1971 .

[299]  Ji-Hoon Jang,et al.  Cross‐Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium‐Ion Batteries , 2016 .

[300]  Feng Wu,et al.  High-performance LiFePO 4 /C electrode with polytetrafluoroethylene as an aqueous-based binder , 2015 .

[301]  Zhongwei Chen,et al.  Ultrathin, transparent, and flexible graphene films for supercapacitor application , 2010 .

[302]  F. Nobili,et al.  Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder , 2012 .

[303]  Sean E. Doris,et al.  Supramolecular Perylene Bisimide-Polysulfide Gel Networks as Nanostructured Redox Mediators in Dissolved Polysulfide Lithium–Sulfur Batteries , 2015 .

[304]  Jusef Hassoun,et al.  Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery , 2015 .

[305]  Xiaofei Yang,et al.  Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li-S Battery Application. , 2015, ACS applied materials & interfaces.

[306]  S. Eliseeva,et al.  New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials , 2015 .

[307]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[308]  E. Oh,et al.  Bio-Derivative Galactomannan Gum Binders for Li4Ti5O12 Negative Electrodes in Lithium-Ion Batteries , 2014 .

[309]  J. Choi,et al.  Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery , 2017 .

[310]  M. Ling,et al.  Multifunctional SA-PProDOT Binder for Lithium Ion Batteries. , 2015, Nano letters.

[311]  Taeeun Yim,et al.  Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes , 2017 .

[312]  Ling Huang,et al.  Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. , 2016, Chemical communications.

[313]  Devendra Kumar,et al.  Advances in conductive polymers , 1998 .

[314]  P. Prosini,et al.  Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries , 2014 .

[315]  Jing-ying Xie,et al.  Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries , 2006 .

[316]  Jong Won Chung,et al.  A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self‐Healing Elastic Polymer , 2016, Advanced materials.

[317]  Donghai Wang,et al.  Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐ion Batteries , 2014 .

[318]  P. M. Ette,et al.  Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders. , 2014, ACS applied materials & interfaces.

[319]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[320]  Xiaohong Kang,et al.  The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors , 2016 .

[321]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[322]  Jou-Hyeon Ahn,et al.  for Rechargeable Lithium Batteries , 2009 .

[323]  J. Lee,et al.  Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode , 2012 .

[324]  J. Dahn,et al.  Synthesis, Characterization, and Thermal Stability of LiCo1 − z [ MnMg ] z / 2O2 , 2010 .

[325]  Andrew M. Minor,et al.  Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode , 2008 .

[326]  Volker Presser,et al.  Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes , 2014 .

[327]  K. Edström,et al.  Why PEO as a binder or polymer coating increases capacity in the Li-S system. , 2013, Chemical communications.

[328]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[329]  C. Jo,et al.  Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. , 2014, Physical chemistry chemical physics : PCCP.

[330]  Joong-Kee Lee,et al.  Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries , 2013 .

[331]  E. Pohjalainen,et al.  Water soluble binder for fabrication of Li4Ti5O12 electrodes , 2013 .

[332]  S. Komaba,et al.  Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries , 2011 .

[333]  S. Dou,et al.  Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery , 2011 .

[334]  Chia‐Chen Li,et al.  Binder Distributions in Water-Based and Organic-Based LiCoO2 Electrode Sheets and Their Effects on Cell Performance , 2011 .

[335]  Hong Liu,et al.  Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. , 2006, Environmental science & technology.

[336]  Lei Tian,et al.  Novel conductive binder for high-performance silicon anodes in lithium ion batteries , 2017 .

[337]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[338]  Y. Bando,et al.  Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. , 2016, Nano letters.

[339]  N. Dudney,et al.  Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries , 2012 .

[340]  Furkan H. Isikgor,et al.  Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices , 2015, Journal of Materials Science: Materials in Electronics.

[341]  Pu Chen,et al.  Effect of poly (vinylidene fluoride)/poly (vinyl acetate) blend composition as cathode binder on electrochemical performances of aqueous Li-ion battery , 2018, Solid State Ionics.

[342]  Prashanth H. Jampani,et al.  Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes , 2015 .

[343]  Jiarong He,et al.  Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries , 2016 .

[344]  Jiarong He,et al.  Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries , 2017 .

[345]  S. Dou,et al.  A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries , 2009 .

[346]  Ya‐Xia Yin,et al.  High‐Capacity Cathode Material with High Voltage for Li‐Ion Batteries , 2018, Advanced materials.

[347]  J. Israelachvili,et al.  Adhesion and Friction Mechanisms of Polymer-on-Polymer Surfaces , 2002, Science.

[348]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[349]  Z. Wen,et al.  A nano-structured and highly ordered polypyrrole-sulfur cathode for lithiumsulfur batteries , 2011 .

[350]  K. Edström,et al.  Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries , 2014 .

[351]  Jinqiu Zhou,et al.  A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries , 2017, Advanced materials.

[352]  J. Shim,et al.  Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .

[353]  Shi Xue Dou,et al.  The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries , 2013 .

[354]  E. Oh,et al.  Effect of Molecular Weight and Degree of Substitution of a Sodium-Carboxymethyl Cellulose Binder on Li4Ti5O12 Anodic Performance , 2013 .

[355]  Jiulin Wang,et al.  Effects of binders on the electrochemical performance of rechargeable magnesium batteries , 2017 .

[356]  N. Wu,et al.  Superabsorbent polymer binder for achieving MnO2 supercapacitors of greatly enhanced capacitance density , 2010 .

[357]  Dong Zhang,et al.  Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder , 2014 .

[358]  N. Choi,et al.  Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder , 2008 .

[359]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[360]  Aarthy Palaniraj,et al.  Production, recovery and applications of xanthan gum by Xanthomonas campestris , 2011 .

[361]  V. Battaglia,et al.  Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries , 2014 .

[362]  Kun Fu,et al.  Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. , 2017, Nano letters.

[363]  Petr Novák,et al.  Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries , 2012 .

[364]  M. Cerbelaud,et al.  Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells , 2014 .

[365]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[366]  Jing-Quan Li,et al.  Battery-electric transit bus developments and operations: A review , 2016 .

[367]  Yonglang Guo,et al.  Effects of reactant dispersion on the structure and electrochemical performance of Li1.2V3O8 , 2008 .

[368]  G. Richardson,et al.  Binder migration during drying of lithium-ion battery electrodes: Modelling and comparison to experiment , 2018, Journal of Power Sources.

[369]  S. Komaba,et al.  Functional interface of polymer modified graphite anode , 2009 .

[370]  Kaoru Dokko,et al.  Polyaniline as a Functional Binder for LiFePO4 Cathodes in Lithium Batteries , 2011 .

[371]  Shaoming Huang,et al.  Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries. , 2017, ACS nano.

[372]  L. Zhai,et al.  Thick LiCoO2/Nickel Foam Cathode Prepared by an Adhesive and Water-Soluble PEG-Based Copolymer Binder , 2012 .

[373]  Cheng Wang,et al.  Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[374]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[375]  Seyed Mohammad Mahdi Dadfar,et al.  Mechanical and water binding properties of carboxymethyl cellulose/multiwalled carbon nanotube nanocomposites , 2015 .

[376]  Feng Li,et al.  Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors , 2010 .

[377]  C. B. Hollabaugh,et al.  Carboxymethylcellulose. Uses and Applications , 1945 .

[378]  Margret Wohlfahrt-Mehrens,et al.  High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO , 2011 .

[379]  A. Harada,et al.  Complex formation between cyclodextrin and poly(propylene glycol) , 1990 .

[380]  Influence of carbon black and binder on Li-ion batteries , 2001 .

[381]  H. Maleki,et al.  Thermal Stability Studies of Binder Materials in Anodes for Lithium‐Ion Batteries , 2000 .

[382]  M. Winter,et al.  (Invited) Na-CMC as Possible Binder for LiFePO4/C Composite Electrodes: The Role of the Drying Procedure , 2010 .

[383]  James M. Burkstrand,et al.  Metal‐polymer interfaces: Adhesion and x‐ray photoemission studies , 1981 .

[384]  H. Zhong,et al.  Investigation on Carboxymethyl Chitosan as New Water Soluble Binder for LiFePO4 Cathode in Li-Ion Batteries , 2014 .

[385]  D. Guyomard,et al.  Tailoring the Binder of Composite Electrode for Battery Performance Optimization , 2005 .

[386]  Lingpiao Lin,et al.  Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature , 2015 .

[387]  Juyoung Kim,et al.  Amphiphilic Graft Copolymers as a Versatile Binder for Various Electrodes of High-Performance Lithium-Ion Batteries. , 2016, Small.

[388]  David Tabor,et al.  The hardness of solids , 1970 .

[389]  K. Laidler The development of the Arrhenius equation , 1984 .

[390]  Lixia Yuan,et al.  Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder , 2011 .

[391]  Huaqing Xie,et al.  Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for , 2011 .

[392]  Yang Liu,et al.  Preparation and Characterization of Si ∕ C Composite Coated with Polyaniline as Novel Anodes for Li-Ion Batteries , 2005 .

[393]  E. Peled,et al.  The Effect of Binders on the Performance and Degradation of the Lithium/Sulfur Battery Assembled in the Discharged State , 2017 .

[394]  Xianzhong Sun,et al.  Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes , 2013, Journal of Solid State Electrochemistry.

[395]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[396]  Seung M. Oh,et al.  A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries , 2013 .

[397]  M. Armand,et al.  Polyimide-polyether binders–diminishing the carbon content in lithium sulfur batteries , 2017 .

[398]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[399]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[400]  Bin Liu,et al.  Thiokol with Excellent Restriction on the Shuttle Effect in Lithium–Sulfur Batteries , 2018 .

[401]  Guangjin Zhao,et al.  Reuse and Recycling of Lithium-Ion Power Batteries , 2017 .

[402]  C. K. Subramaniam,et al.  Performance of EDLCs using Nafion and Nafion composites as electrolyte , 2011 .

[403]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[404]  Jinghua Guo,et al.  Acacia Senegal–Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries , 2015 .

[405]  B. Kokta,et al.  Improving adhesion of wood fiber with polystyrene by the chemical treatment of fiber with a coupling agent and the influence on the mechanical properties of composites , 1989 .

[406]  J. Dahn,et al.  Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder , 2008 .

[407]  R. Durairaj,et al.  Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt , 2014, PloS one.

[408]  F. Wei,et al.  Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors , 2010 .

[409]  Z. Wen,et al.  On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders , 2016 .

[410]  U. Paik,et al.  Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries , 2017 .

[411]  Jaehoon Kim,et al.  Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries. , 2016, ACS applied materials & interfaces.

[412]  Jiulin Wang,et al.  Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries , 2016 .

[413]  Hao Yu,et al.  Effect of molecular architecture on single polymer adhesion. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[414]  Y. Abu-Lebdeh,et al.  Water-soluble binders for MCMB carbon anodes for lithium-ion batteries , 2011 .

[415]  Roger S. Porter,et al.  The effect of molecular weight on the physical and mechanical properties of ultra-drawn high density polyethylene , 1976 .

[416]  D. Aurbach,et al.  Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. , 2017, The journal of physical chemistry letters.

[417]  Jianfeng Huang,et al.  Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries , 2017 .

[418]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[419]  Hee‐Tak Kim,et al.  Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries , 2002 .

[420]  Yaqin Huang,et al.  Discharge Process of the Sulfur Cathode with a Gelatin Binder , 2008 .

[421]  Thomas M. Higgins,et al.  A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. , 2016, ACS nano.

[422]  J. Dahn,et al.  Studies of Lithium-Exchanged Nafion as an Electrode Binder for Alloy Negatives in Lithium-Ion Batteries , 2008 .

[423]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[424]  K. Zaghib,et al.  LiFePO4 water-soluble binder electrode for Li-ion batteries , 2007 .

[425]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[426]  M. McHugh,et al.  Comparison of the Solubility of PVF and PVDF in Supercritical CH2F2 and CO2 and in CO2 with Acetone, Dimethyl Ether, and Ethanol , 1999 .

[427]  Jae-won Lee,et al.  Flexible and wrinkle-free electrode fabricated with polyurethane binder for lithium-ion batteries , 2017 .