On reversal complexity for alternating Turing machines

The reversal complexity of alternating Turing machines (ATM) is investigated. The strict lower bounds on reversals for recognizing nonregular languages by Sigma /sub k/ machines are settled. Some results relating reversal and space complexities are obtained.<<ETX>>

[1]  Maciej Liskiewicz,et al.  On Reversal Bounded Alternating Turing Machines , 1987, Theor. Comput. Sci..

[2]  Ronald V. Book,et al.  Reversal-Bounded Acceptors and Intersections of Linear Languages , 1974, SIAM J. Comput..

[3]  Patrick C. Fischer The Reduction of Tape Reversals for Off-Line One-Tape Turing Machines , 1968, J. Comput. Syst. Sci..

[4]  Eitan M. Gurari,et al.  Simple Counter Machines and Number-Theoretic Problems , 1979, J. Comput. Syst. Sci..

[5]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[6]  Zvi Galil,et al.  On Reversal-Bounded Counter Machines and on Pushdown Automata with a Bound on the Size of their Pushdown Store , 1982, Inf. Control..

[7]  Richard E. Ladner,et al.  Propositional modal logic of programs , 1977, STOC '77.

[8]  Juris Hartmanis Tape-Reversal Bounded Turing Machine Computations , 1968, J. Comput. Syst. Sci..

[9]  Oscar H. Ibarra,et al.  Characterizations of Some Tape and Time Complexity Classes of Turing Machines in Terms of Multihead and Auxiliary Stack Automata , 1971, J. Comput. Syst. Sci..

[10]  Tat-hung Chan,et al.  Reversal complexity of counter machines , 1981, STOC '81.

[11]  Wolfgang J. Paul,et al.  On alternation , 1980, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[12]  Maciej Liskiewicz,et al.  Reversal Complexity Classes for Alternating Turing Machines , 1990, SIAM J. Comput..

[13]  Juraj Hromkovic Hierarchy of Reversal and Zerotesting Bounded Multicounter Machines , 1984, MFCS.

[14]  Neil Immerman,et al.  Nondeterministic space is closed under complementation , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.