Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes

An indirect inference method is implemented for a class of stochastic volatility models for financial data based on non-Gaussian Ornstein-Uhlenbeck (OU) processes. First, a quasi-likelihood estimator is derived from an approximative Gaussian state space representation of the OU model. Next, data are simulated from the OU model for given parameter values. The indirect inference estimator is then obtained by minimizing, in a weighted mean squared error sense, the score vector of the quasi-likelihood function for the simulated data, when this score vector is evaluated at the quasi-likelihood estimator obtained from the real data. The method is applied to Euro/Norwegian krone (NOK) and US Dollar/NOK daily exchange rate data. A simulation study reveals that the quasi-likelihood estimator may have a large bias even in large samples, but that the indirect inference estimator substantially reduces this bias. The accompanying R-package, which interfaces C++ code, is documented and can be downloaded.

[1]  E. Nicolato,et al.  Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type , 2003 .

[2]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[3]  D. Cox,et al.  Asymptotic techniques for use in statistics , 1989 .

[4]  T. Andersen,et al.  Estimating continuous-time stochastic volatility models of the short-term interest rate , 1997 .

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  R. Fletcher Practical Methods of Optimization , 1988 .

[7]  F. Diebold Empirical modeling of exchange rate dynamics , 1988 .

[8]  A. Kuk Asymptotically Unbiased Estimation in Generalized Linear Models with Random Effects , 1995 .

[9]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[10]  Neil Shephard,et al.  Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models , 2003 .

[11]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[12]  Lennart Bondesson On the Lévy Measure of the Lognormal and the LogCauchy Distributions , 2002 .

[13]  Xinsheng Zhang,et al.  Exact Simulation of IG-OU Processes , 2008 .

[14]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[15]  Arvid Raknerud,et al.  Forecasting key macroeconomic variables from a large number of predictors: A state space approach , 2010 .

[16]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[17]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[18]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[19]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[20]  Jim E. Griffin,et al.  Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes , 2010, Comput. Stat. Data Anal..

[21]  Jacob A Frenkel Exchange Rates and International Macroeconomics , 1983 .

[22]  F. Diebold,et al.  The dynamics of exchange rate volatility: a multivariate latent factor ARCH model , 1986 .

[23]  Giuseppe Cavaliere Stochastic Volatility: Selected Readings , 2006 .

[24]  Nikolai Leonenko,et al.  Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution , 2009, Comput. Stat. Data Anal..

[25]  Alan F. Karr,et al.  State-Space and Unobserved Component Models: Theory and Applications , 2006 .

[26]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[27]  A. Gallant,et al.  Estimating stochastic differential equations efficiently by minimum chi-squared , 1997 .

[28]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[29]  M. Steel,et al.  Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility , 2006 .

[30]  S. Pastorello,et al.  Statistical Inference for Random-Variance Option Pricing , 2000 .

[31]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[32]  Ronald MacDonald,et al.  Exchange Rate Behaviour: Are Fundamentals Important? , 1999 .

[33]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[34]  J. Zakoian,et al.  QUASI-INDIRECT INFERENCE FOR DIFFUSION PROCESSES , 1998, Econometric Theory.

[35]  William H. Press,et al.  Numerical recipes in C , 2002 .

[36]  T. Nijman,et al.  Temporal Aggregation of GARCH Processes. , 1993 .

[37]  Gabriele Fiorentini,et al.  Control Variates for Variance Reduction in Indirect Inference: Interest Rate Models in Continuous Time , 1998 .

[38]  H. Sørensen Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .

[39]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[40]  Kluwer Academic Publishers Methodology and computing in applied probability , 1999 .