A conjectured combinatorial formula for the Hilbert series for diagonal harmonics

We introduce a conjectured way of expressing the Hilbert series of diagonal harmonics as a weighted sum over parking functions. Our conjecture is based on a pair of statistics for the q,t-Catalan sequence discovered by Haiman and proven by Haglund and Garsia (Proc. Nat. Acad. Sci. 98 (2001) 4313-4316). We show how our q,t-parking function formula for the Hilbert series can be expressed more compactly as a sum over permutations. We also derive two equivalent forms of our conjecture, one of which is based on the original pair of statistics for the q,t-Catalan introduced by Haglund and the other of which is expressed in terms of rooted, labelled trees.

[1]  Nicholas A. Loehr,et al.  Trapezoidal lattice paths and multivariate analogues , 2003, Adv. Appl. Math..

[2]  James Haglund Conjectured statistics for the q,t-Catalan numbers , 2003 .

[3]  A M Garsia,et al.  A positivity result in the theory of Macdonald polynomials , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Kreweras Une famille de polynômes ayant plusieurs propriétés énumeratives , 1980 .

[5]  Mark Haiman,et al.  Macdonald Polynomials and Geometry , 1999 .

[6]  John Riordan,et al.  Mappings of acyclic and parking functions , 1974 .

[7]  Uri N. Peled,et al.  A note on major sequences and external activity in trees , 1997, Electron. J. Comb..

[8]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[9]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[10]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[11]  Adriano M. Garsia,et al.  A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..

[12]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[13]  A. M. Garsia,et al.  A remarkable q, t-Catalan sequence and q-Lagrange inversion , 1996 .

[14]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[15]  Nicholas A. Loehr,et al.  Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..

[16]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .