A conjectured combinatorial formula for the Hilbert series for diagonal harmonics
暂无分享,去创建一个
[1] Nicholas A. Loehr,et al. Trapezoidal lattice paths and multivariate analogues , 2003, Adv. Appl. Math..
[2] James Haglund. Conjectured statistics for the q,t-Catalan numbers , 2003 .
[3] A M Garsia,et al. A positivity result in the theory of Macdonald polynomials , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[4] G. Kreweras. Une famille de polynômes ayant plusieurs propriétés énumeratives , 1980 .
[5] Mark Haiman,et al. Macdonald Polynomials and Geometry , 1999 .
[6] John Riordan,et al. Mappings of acyclic and parking functions , 1974 .
[7] Uri N. Peled,et al. A note on major sequences and external activity in trees , 1997, Electron. J. Comb..
[8] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[9] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[10] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[11] Adriano M. Garsia,et al. A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..
[12] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[13] A. M. Garsia,et al. A remarkable q, t-Catalan sequence and q-Lagrange inversion , 1996 .
[14] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[15] Nicholas A. Loehr,et al. Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..
[16] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .