Self-powered flexible inorganic electronic system

Abstract Self-powered flexible inorganic electronic systems have been demonstrated to be the core of next-generation electronics due to their lightweight, thin, self-sustainable and biocompatible properties, which are applicable to cramped or corrugated surfaces. Many researchers have studied myriad approaches for high performance flexible electronics, e.g. energy harvesters, batteries, high-density memories, large-scale integration (LSI), light-emitting diodes (LEDs), and sensors. Moreover, innovative devices for in vivo biomedical applications have been demonstrated on curvilinear and isolated regions of human bodies for detecting or even treating diseases. This paper reviews recent advances in self-powered flexible inorganic electronics, covering material selection, mechanical design, fabrication method and their all-in-one integration on a single plastic substrate.

[1]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[2]  Henry A. Sodano,et al.  A Low‐Frequency Energy Harvester from Ultralong, Vertically Aligned BaTiO3 Nanowire Arrays , 2014 .

[3]  Jun Zhou,et al.  Fiber-based generator for wearable electronics and mobile medication. , 2014, ACS nano.

[4]  Weidong Zhou,et al.  12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. , 2010, Small.

[5]  William S. Rees,et al.  True Blue Inorganic Optoelectronic Devices , 2000 .

[6]  R. Delmdahl,et al.  Large-Area Laser-Lift-Off Processing in Microelectronics , 2013 .

[7]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[8]  Ji Hoon Kim,et al.  Reverse‐Micelle‐Induced Porous Pressure‐Sensitive Rubber for Wearable Human–Machine Interfaces , 2014, Advanced materials.

[9]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[10]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[11]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[12]  John A Rogers,et al.  A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. , 2005, Small.

[13]  Bruno Scrosati,et al.  Challenge of portable power , 1995, Nature.

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[16]  B. Cho,et al.  A wearable thermoelectric generator fabricated on a glass fabric , 2014 .

[17]  M. G. Kane,et al.  Low-Temperature Polycrystalline Silicon Thin-Film Transistors and Circuits on Flexible Substrates , 2006 .

[18]  Simiao Niu,et al.  Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. , 2014, Nano letters.

[19]  Heung Cho Ko,et al.  Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer , 2014 .

[20]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[21]  Donggu Im,et al.  In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. , 2013, ACS nano.

[22]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[23]  Keon Jae Lee,et al.  Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications , 2012 .

[24]  Kwi-Il Park,et al.  Lead-free BaTiO3 nanowires-based flexible nanocomposite generator. , 2014, Nanoscale.

[25]  E. Menard,et al.  High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates , 2006, IEEE Electron Device Letters.

[26]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[27]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[28]  Myunghwan Byun,et al.  Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off , 2014, Advanced materials.

[29]  Seung Hyun Lee,et al.  Flexible GaN LED on a polyimide substrate for display applications , 2012, OPTO.

[30]  Ron Pelrine,et al.  Dielectric elastomers: generator mode fundamentals and applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[34]  Seung Jun Kim,et al.  Flexible one diode–one resistor resistive switching memory arrays on plastic substrates , 2014 .

[35]  D. Bour,et al.  Nitride-based semiconductors for blue and green light-emitting devices , 1997, Nature.

[36]  I. Choi,et al.  Laser-induced solid-phase doped graphene. , 2014, ACS nano.

[37]  Dewei Xu,et al.  High-performance flexible thin-film transistors exfoliated from bulk wafer. , 2012, Nano letters.

[38]  John A Rogers,et al.  Optimized structural designs for stretchable silicon integrated circuits. , 2009, Small.

[39]  Zach DeVito,et al.  Opt , 2017 .

[40]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[41]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[42]  Manoj Kumar Gupta,et al.  Unidirectional High‐Power Generation via Stress‐Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator , 2014 .

[43]  T. Hyeon,et al.  Fabric‐Based Integrated Energy Devices for Wearable Activity Monitors , 2014, Advanced materials.

[44]  John A. Rogers,et al.  Fabrication of microstructured silicon (µs-Si) from a bulk Si wafer and its use in the printing of high-performance thin-film transistors on plastic substrates , 2010 .

[45]  C. Ha,et al.  Polymers for flexible displays: From material selection to device applications , 2008 .

[46]  H. Sterenborg,et al.  Fractionated aminolevulinic acid–photodynamic therapy provides additional evidence for the use of PDT for non‐melanoma skin cancer , 2008, Journal of the European Academy of Dermatology and Venereology : JEADV.

[47]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[48]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[49]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[50]  Gilwon Yoon,et al.  Noninvasive total hemoglobin measurement. , 2002, Journal of biomedical optics.

[51]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[52]  Haegyeom Kim,et al.  Recent progress on flexible lithium rechargeable batteries , 2014 .

[53]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[54]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[55]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[56]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[57]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[58]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[59]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[60]  Long Lin,et al.  Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor , 2013 .

[61]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[62]  Chang Kyu Jeong,et al.  Self-powered fully-flexible light-emitting system enabled by flexible energy harvester , 2014 .

[63]  Hongxia Wang,et al.  Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs , 2013 .

[64]  John A. Rogers,et al.  Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs , 2010 .

[65]  So Young Park,et al.  Laser lift-off of GaN thin film and its application to the flexible light emitting diodes , 2012, Optics & Photonics - NanoScience + Engineering.

[66]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[67]  Seungjun Kim,et al.  Flexible memristive memory array on plastic substrates. , 2011, Nano letters.

[68]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[69]  Henry A. Sodano,et al.  Vertically aligned BaTiO3 nanowire arrays for energy harvesting , 2014 .

[70]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[71]  Zhong Lin Wang,et al.  Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors , 2012, Nanotechnology.

[72]  T. Ren,et al.  A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. , 2013, Nanoscale.

[73]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[74]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[75]  Nikhil Koratkar,et al.  Photothermally reduced graphene as high-power anodes for lithium-ion batteries. , 2012, ACS nano.

[76]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[77]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[78]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[79]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[80]  Aneesh Koka,et al.  High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays , 2013, Nature Communications.

[81]  Michael C. McAlpine,et al.  Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. , 2013, Nano letters.

[82]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[83]  M. G. Kane,et al.  34.4: High Performance CMOS-on-Plastic Circuits using Sequential Laterally Solidified Silicon TFTs , 2006 .

[84]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[85]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[86]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[87]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[88]  Huisheng Peng,et al.  Wearable solar cells by stacking textile electrodes. , 2014, Angewandte Chemie.

[89]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[90]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[91]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[92]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[93]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[94]  Joonsoo Jeong,et al.  Monolithic Encapsulation of Implantable Neuroprosthetic Devices Using Liquid Crystal Polymers , 2011, IEEE Transactions on Biomedical Engineering.

[95]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[96]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[97]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[98]  Jerry A. Simmons,et al.  Solid-State Lighting: An Integrated Human Factors, Technology, and Economic Perspective , 2010, Proceedings of the IEEE.

[99]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[100]  John A Rogers,et al.  High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. , 2012, Small.

[101]  Ming-Yen Lu,et al.  Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low‐Cost Flexible Electronics , 2010, Advanced materials.

[102]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[103]  John A. Rogers,et al.  Bendable GaN high electron mobility transistors on plastic substrates , 2006 .

[104]  John Lewis Material challenge for flexible organic devices , 2006 .

[105]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.