Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method

[1]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[2]  W. Verhoef,et al.  Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image , 2014 .

[3]  LinLin Shen,et al.  Unsupervised Band Selection for Hyperspectral Imagery Classification Without Manual Band Removal , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[5]  K. Itten,et al.  Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties , 2004 .

[6]  Shunlin Liang,et al.  Improving LAI Mapping by Integrating MODIS and CYCLOPES LAI Products Using Optimal Interpolation , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Licheng Jiao,et al.  Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[8]  S. Liang,et al.  Validation of MODIS and CYCLOPES LAI products using global field measurement data , 2012 .

[9]  Peng Gong,et al.  Inverting a canopy reflectance model using a neural network , 1999 .

[10]  Brian O'Connor,et al.  Analysis of Sentinel-2 and RapidEye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model , 2019, Remote. Sens..

[11]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[12]  R. V. Rossel,et al.  Robust Modelling of Soil Diffuse Reflectance Spectra by “Bagging-Partial Least Squares Regression” , 2007 .

[13]  F. M. Danson,et al.  Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level , 2004 .

[14]  Anatoly A. Gitelson,et al.  Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content , 2012 .

[15]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[16]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[17]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[18]  Zhihao Qin,et al.  Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method , 2016 .

[19]  Qiang Zhang,et al.  Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Aleixandre Verger,et al.  Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations , 2011 .

[21]  M. Vohland,et al.  Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT+SAIL) , 2008 .

[22]  Minseok Kang,et al.  Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression: Mechanistic insights from observations and process-based simulations , 2019 .

[23]  J. Watmough,et al.  Non-destructive estimation of wheat leaf chlorophyll content from hyperspectral measurements through analytical model inversion , 2010 .

[24]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[25]  G. Carter Ratios of leaf reflectances in narrow wavebands as indicators of plant stress , 1994 .

[26]  W. Verhoef,et al.  Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations , 2011 .

[27]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[28]  Salah Sukkarieh,et al.  Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review , 2018, Comput. Electron. Agric..

[29]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[30]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[31]  F. J. García-Haro,et al.  Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring , 2016 .

[32]  S. Liang,et al.  A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies , 2005 .

[33]  Weiwei Liu,et al.  Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method , 2017, Remote. Sens..

[34]  A. Gitelson,et al.  Informative spectral bands for remote green LAI estimation in C3 and C4 crops , 2016 .

[35]  K. Soudani,et al.  Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass , 2008 .

[36]  T. S. Prasad,et al.  New hyperspectral vegetation characterization parameters , 2001 .

[37]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[38]  A. Skidmore,et al.  Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model , 2012 .

[39]  Matthew F. McCabe,et al.  A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning , 2018 .

[40]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[41]  F. Baret,et al.  Evaluation of Canopy Biophysical Variable Retrieval Performances from the Accumulation of Large Swath Satellite Data , 1999 .

[42]  R. Guevara-González,et al.  Global sensitivity analysis by means of EFAST and Sobol' methods and calibration of reduced state-variable TOMGRO model using genetic algorithms , 2014 .

[43]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[44]  Jocelyn Chanussot,et al.  Nonlinear PCA for Visible and Thermal Hyperspectral Images Quality Enhancement , 2015, IEEE Geoscience and Remote Sensing Letters.

[45]  Weimin Ju,et al.  Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach , 2019, Remote Sensing of Environment.

[46]  H. Abdi Partial least squares regression and projection on latent structure regression (PLS Regression) , 2010 .

[47]  F. Baret,et al.  Coupling canopy functioning and radiative transfer models for remote sensing data assimilation , 2001 .

[48]  Wen-Qin Wang,et al.  Tensor Decomposition and PCA Jointed Algorithm for Hyperspectral Image Denoising , 2016, IEEE Geoscience and Remote Sensing Letters.

[49]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[50]  Ruiliang Pu,et al.  Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Yubin Lan,et al.  Effect of Vertical Distribution of Crop Structure and Biochemical Parameters of Winter Wheat on Canopy Reflectance Characteristics and Spectral Indices , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Xu Wang,et al.  Predicting Grassland Leaf Area Index in the Meadow Steppes of Northern China: A Comparative Study of Regression Approaches and Hybrid Geostatistical Methods , 2016, Remote. Sens..

[53]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[54]  Yuri Knyazikhin,et al.  Cloud‐vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness , 2000 .

[55]  Jochem Verrelst,et al.  Remote Estimation of Crop Chlorophyll Content by Means of High‐Spectral‐Resolution Reflectance Techniques , 2011 .

[56]  Bisun Datt,et al.  A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves , 1999 .

[57]  A. Gitelson,et al.  Quantitative estimation of chlorophyll-a using reflectance spectra : experiments with autumn chestnut and maple leaves , 1994 .

[58]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[59]  Bo-Cai Gao,et al.  ISS as a Platform for Optical Remote Sensing of Ecosystem Carbon Fluxes: A Case Study Using HICO , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[60]  Guangyi Chen,et al.  Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Marco Diani,et al.  Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[62]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[63]  Tahir Mehmood,et al.  A Partial Least Squares Based Procedure for Upstream Sequence Classification in Prokaryotes , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[64]  R. Colombo,et al.  Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations , 2004 .

[65]  Qi Wang,et al.  Hyperspectral Band Selection by Multitask Sparsity Pursuit , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Weimin Ju,et al.  Spatial and temporal variations of forest LAI in China during 2000–2010 , 2012 .

[67]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[68]  Gustau Camps-Valls,et al.  Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods , 2018, Surveys in Geophysics.

[69]  Geoffrey S. Hubona,et al.  Using PLS path modeling in new technology research: updated guidelines , 2016, Ind. Manag. Data Syst..

[70]  Wenjiang Huang,et al.  A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content , 2019, Remote. Sens..

[71]  M. Hill Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect , 2013 .

[72]  C. Justice,et al.  Development of vegetation and soil indices for MODIS-EOS , 1994 .

[73]  Guijun Yang,et al.  Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[74]  Qing Xiao,et al.  Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[75]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[76]  Baodong Xu,et al.  Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO , 2017 .

[77]  M. Cho,et al.  An investigation into robust spectral indices for leaf chlorophyll estimation , 2011 .

[78]  P. Gong,et al.  Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .

[79]  Bingqian Chen,et al.  Influence of Different Bandwidths on LAI Estimation Using Vegetation Indices , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[80]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[81]  Adina Tillack,et al.  Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices , 2014 .

[82]  Roberta E. Martin,et al.  Spectroscopy of canopy chemicals in humid tropical forests , 2011 .

[83]  Wenjiang Huang,et al.  Detection of leaf and canopy EWT by calculating REWT from reflectance spectra , 2010 .

[84]  Zhihao Qin,et al.  Estimation of Crop LAI using hyperspectral vegetation indices and a hybrid inversion method , 2015 .

[85]  Annamaria Castrignanò,et al.  Laboratory-based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content , 2015 .

[86]  Jon Atli Benediktsson,et al.  Spectral–Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[87]  Joseph Meola,et al.  Modeling and estimation of signal-dependent noise in hyperspectral imagery. , 2011, Applied optics.

[88]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[89]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[90]  A. Kaplan,et al.  A Beginner's Guide to Partial Least Squares Analysis , 2004 .

[91]  O. Mutanga,et al.  Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression , 2014 .

[92]  Li Lin,et al.  Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm , 2018, Remote. Sens..

[93]  Mikio Umeda,et al.  Model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing , 2009 .

[94]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[95]  Ruiliang Pu,et al.  Evaluating seasonal effect on forest leaf area index mapping using multi-seasonal high resolution satellite pléiades imagery , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[96]  T. Cheng,et al.  Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.