Ecologic Niche Modeling and Spatial Patterns of Disease Transmission

TOC Summary: This technique can be used to study the geography and ecology of disease transmission.

[1]  J. Grinnell Field Tests of Theories Concerning Distributional Control , 1917, The American Naturalist.

[2]  A. O. Nicholls,et al.  Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species , 1990 .

[3]  A. Gelfand,et al.  Hierarchical Spatio-Temporal Mapping of Disease , 2007 .

[4]  Bradley P. Carlin,et al.  Hierarchical Spatio-Temporal Mapping of Disease Rates , 1997 .

[5]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[6]  M. Thomson,et al.  Towards a kala azar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables , 1999, Tropical medicine & international health : TM & IH.

[7]  S. Manel,et al.  Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird , 1999 .

[8]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[9]  I Kleinschmidt,et al.  A spatial statistical approach to malaria mapping. , 2000, International journal of epidemiology.

[10]  F. Skov Potential plant distribution mapping based on climatic similarity , 2000 .

[11]  Y. MacNab,et al.  Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates , 2001, Biometrics.

[12]  A. Peterson,et al.  Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae). , 2002, The American journal of tropical medicine and hygiene.

[13]  R. Leemans,et al.  Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050 , 2002 .

[14]  K. Wessels,et al.  Vulnerability of South African animal taxa to climate change , 2002 .

[15]  S. Hay,et al.  Satellite imagery in the study and forecast of malaria , 2002, Nature.

[16]  David R. B. Stockwell,et al.  Effects of sample size on accuracy of species distribution models , 2002 .

[17]  A. Peterson,et al.  Ecologic Niche Modeling and Potential Reservoirs for Chagas Disease, Mexico. , 2002, Emerging infectious diseases.

[18]  David R. B. Stockwell,et al.  Future projections for Mexican faunas under global climate change scenarios , 2002, Nature.

[19]  A. Peterson,et al.  Niche Modeling and Geographic Range Predictions in the Marine Environment Using a Machine-learning Algorithm , 2003 .

[20]  A. Peterson Predicting the Geography of Species’ Invasions via Ecological Niche Modeling , 2003, The Quarterly Review of Biology.

[21]  David R. B. Stockwell,et al.  Comparison of resolution of methods used in mapping biodiversity patterns from point-occurrence data , 2003 .

[22]  A. Peterson,et al.  Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. , 2003, International journal for parasitology.

[23]  A. Peterson,et al.  Potential Mammalian Filovirus Reservoirs , 2004, Emerging infectious diseases.

[24]  A. Peterson,et al.  Distribution of Members of Anopheles quadrimaculatus Say s.l. (Diptera: Culicidae) and Implications for Their Roles in Malaria Transmission in the United States , 2004, Journal of medical entomology.

[25]  A. Peterson,et al.  Biodiversity informatics: managing and applying primary biodiversity data. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  A. Peterson,et al.  Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity , 2004 .

[27]  A. Peterson,et al.  Ecologic and Geographic Distribution of Filovirus Disease , 2004, Emerging infectious diseases.

[28]  A. Peterson,et al.  Geographic and ecologic distributions of the Anopheles gambiae complex predicted using a genetic algorithm. , 2004, The American journal of tropical medicine and hygiene.

[29]  M. Sykes,et al.  Climate change threats to plant diversity in Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Peterson,et al.  Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. , 2005, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[31]  A. Peterson,et al.  INTERPRETATION OF MODELS OF FUNDAMENTAL ECOLOGICAL NICHES AND SPECIES' DISTRIBUTIONAL AREAS , 2005 .

[32]  A. Peterson,et al.  Fine-scale predictions of distributions of Chagas disease vectors in the state of Guanajuato, Mexico. , 2005, Journal of medical entomology.

[33]  A. Peterson,et al.  DISTRIBUCIÓN DE ROEDORES RESERVORIOS DEL VIRUS CAUSANTE DEL SÍNDROME PULMONAR POR HANTAVIRUS Y REGIONES DE POSIBLE RIESGO EN MÉXICO , 2005, ACTA ZOOLÓGICA MEXICANA (N.S.).

[34]  M. Araújo,et al.  Validation of species–climate impact models under climate change , 2005 .

[35]  A. Peterson,et al.  NATIVE-RANGE ECOLOGY AND INVASIVE POTENTIAL OF CRICETOMYS IN NORTH AMERICA , 2006 .

[36]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[37]  A. Peterson,et al.  Geographic potential for outbreaks of Marburg hemorrhagic fever. , 2006, The American journal of tropical medicine and hygiene.

[38]  A. Peterson,et al.  Conservatism of ecological niche characteristics in North American plant species over the Pleistocene‐to‐Recent transition , 2006 .

[39]  F. Gascon,et al.  Niche differentiation and fine-scale projections for Argentine ants based on remotely sensed data. , 2006, Ecological applications : a publication of the Ecological Society of America.