Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis

An asymptotic analysis of the compressible Euler equations in the limit of vanishing Mach numbers is used as a guideline for the development of a low Mach number extension of an explicit higher order shock capturing scheme. For moderate and large Mach numbers the underlying explicit compressible flow solver is active without modification. For low Mach numbers, the scheme employs an operator splitting technique motivated by the asymptotic analysis. Advection of mass and momentum as well as long wave acoustics are discretized explicitly, while in solving the sonic terms, the scheme uses an implicit pressure correction formulation to guarantee both divergence-free flow in the zero Mach number limit and appropriate representation of weakly nonlinear acoustic effects for small but finite Mach numbers. This asymptotics based approach is also used to show how to modify incompressible flow solvers to capture weakly compressible flows.

[1]  H. C. Yee,et al.  Semi-implicit and fully implicit shock-capturing methods for nonequilibrium flows , 1989 .

[2]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[3]  H. C. Yee,et al.  Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms , 1987 .

[4]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[5]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[6]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[7]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[8]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .

[9]  Elaine S. Oran,et al.  A barely implicit correction for flux-corrected transport , 1987 .

[10]  E. Krause,et al.  Numerical Simulation of Incompressible Flows with the Method of Artificial Compressibility , 1996 .

[11]  Hantaek Bae Navier-Stokes equations , 1992 .

[12]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[13]  J. A. Bland A mathematical introduction to fluid mechanics, by A. J. Chorin and J. E. Marsden. Pp 168. DM58. 1990. ISBN 3-540-97300-1 (Springer) , 1991, The Mathematical Gazette.

[14]  Bertil Gustafsson,et al.  Navier-Stokes equations for almost incompressible flow , 1991 .

[15]  C.-D. Munz,et al.  The Multiple Pressure Variable Approach for the NumericalApproximation of Weakly Compressible Fluid Flow , 1994 .

[16]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[17]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[18]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[19]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[20]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[21]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[22]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[23]  Randall J. LeVeque,et al.  A large Time Step Generalization of Godunov’s Method for Systems of Conservation Laws , 1985 .