Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid

[1]  N. Glaichenhaus,et al.  Electrostimulation of the carotid sinus nerve in mice attenuates inflammation via glucocorticoid receptor on myeloid immune cells , 2020, Journal of neuroinflammation.

[2]  Richard J. A. Wilson,et al.  PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines , 2020, The Journal of physiology.

[3]  J. Paton,et al.  The Logic of Carotid Body Connectivity to the Brain. , 2019, Physiology.

[4]  Richard J. A. Wilson,et al.  Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors , 2018, Nature Communications.

[5]  Richard J. A. Wilson,et al.  Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor‐dependent sensory long‐term facilitation in naïve carotid bodies , 2018, The Journal of physiology.

[6]  G. Tezini,et al.  Carotid sinus nerve electrical stimulation in conscious rats attenuates systemic inflammation via chemoreceptor activation , 2017, Scientific Reports.

[7]  V. Somers,et al.  Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease , 2016, Biological Research.

[8]  R. Fernández,et al.  Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide , 2015, Journal of Neuroimmunology.

[9]  K. Snibson,et al.  Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma , 2014, Respiratory Research.

[10]  Ken Sugino,et al.  Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways , 2014, Proceedings of the National Academy of Sciences.

[11]  M. Belvisi,et al.  Transient receptor potential (TRP) channels in the airway: role in airway disease , 2014, British journal of pharmacology.

[12]  S. Snyder,et al.  Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema , 2014, Proceedings of the National Academy of Sciences.

[13]  J. Paton,et al.  The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension , 2013, Nature Communications.

[14]  Xuelin Huang,et al.  An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. , 2013, Biostatistics, bioinformatics and biomathematics.

[15]  Richard J. A. Wilson,et al.  Stress peptide PACAP engages multiple signaling pathways within the carotid body to initiate excitatory responses in respiratory and sympathetic chemosensory afferents. , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[16]  S. Meeker,et al.  TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. , 2012, American journal of physiology. Lung cellular and molecular physiology.

[17]  N. Prabhakar,et al.  Peripheral chemoreceptors: function and plasticity of the carotid body. , 2012, Comprehensive Physiology.

[18]  P. Whelan,et al.  Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. , 2012, Journal of applied physiology.

[19]  Rui Wu,et al.  Interleukin‐6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells , 2009, Journal of neuroscience research.

[20]  Q. Hamid,et al.  Airway remodeling in allergen-challenged Brown Norway rats: distribution of proteoglycans. , 2006, American journal of physiology. Lung cellular and molecular physiology.

[21]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[22]  D. Denis,et al.  The Immunomodulatory Actions of Prostaglandin E2 on Allergic Airway Responses in the Rat1 , 2002, The Journal of Immunology.

[23]  M. Bonora,et al.  Lung mechanics and end-expiratory lung volume during hypoxia in rats. , 1999, Journal of applied physiology.

[24]  H. Folgering,et al.  Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. , 1991, Thorax.

[25]  P. Parsons,et al.  The effects of acute hypoxia and hypercapnia on pulmonary mechanics in normal subjects and patients with chronic pulmonary disease. , 1989, Chest.

[26]  A. Denjean,et al.  Mild isocapnic hypoxia enhances the bronchial response to methacholine in asthmatic subjects. , 1988, The American review of respiratory disease.

[27]  N. Cherniack,et al.  Cooling the intermediate area of the ventral medullary surface affects tracheal responses to hypoxia. , 1987, Respiration physiology.

[28]  T. Ahmed,et al.  Hypoxia enhances nonspecific bronchial reactivity. , 1985, The American review of respiratory disease.

[29]  H. Boushey,et al.  Effect of eucapnic hypoxia on bronchomotor tone and on the bronchomotor response to dry air in asthmatic subjects. , 1985, The American review of respiratory disease.