Third Generation Cellular Automation for Modeling Excitable Media

This paper introduces a new cellular automaton model of excitable media with improved treatments of (1) diffusion and wave propagation, and (2) slow dynamics of the recovery variable. The automaton is both computationally efficient and faithful to the underlying partial differential equations.

[1]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[2]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.

[3]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[4]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[5]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[6]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[7]  J. Tyson,et al.  A cellular automaton model of excitable media. III: fitting the Belousov-Zhabotinskiic reaction , 1990 .

[8]  W. Rheinboldt,et al.  A COMPUTER MODEL OF ATRIAL FIBRILLATION. , 1964, American heart journal.

[9]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[10]  S. P. Hastings,et al.  Pattern formation and periodic structures in systems modeled by reaction-diffusion equations , 1978 .

[11]  J. Tyson,et al.  The Speed of Propagation of Oxidizing and Reducing Wave Fronts in the Belousov-Zhabotinskii Reaction , 1984 .

[12]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[13]  A. Winfree When time breaks down , 1987 .

[14]  L. Watson,et al.  Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .

[15]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[16]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[17]  Wolfgang Jahnke,et al.  A SURVEY OF SPIRAL-WAVE BEHAVIORS IN THE OREGONATOR MODEL , 1991 .

[18]  V. Fast,et al.  Stability of vortex rotation in an excitable cellular medium , 1991 .

[19]  医療政策委員会 Concentration wave propagation in two-dimensional liquid-phase self-oscillating system , 1970 .

[20]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[21]  Marc Courtemanche,et al.  Stable three-dimensional action potential circulation in the FitzHugh-Nagumo model , 1990 .