暂无分享,去创建一个
[1] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[2] M. M. Maza. On Triangular Decompositions of Algebraic Varieties , 2000 .
[3] Marc Moreno Maza,et al. On the Theories of Triangular Sets , 1999, J. Symb. Comput..
[4] Arie M. C. A. Koster,et al. Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..
[5] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[6] Martin S. Andersen,et al. Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..
[7] Jesús A. De Loera,et al. Hilbert's nullstellensatz and an algorithm for proving combinatorial infeasibility , 2008, ISSAC '08.
[8] Dongming Wang,et al. Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..
[9] Fabrice Rouillier,et al. Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.
[10] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[11] Marc Moreno Maza,et al. The RegularChains library in MAPLE , 2005, SIGS.
[12] Gian-Carlo Rota,et al. Mathematical Essays in honor of Gian-Carlo Rota , 1998 .
[13] Rina Dechter,et al. Constraint Processing , 1995, Lecture Notes in Computer Science.
[14] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[15] Saburo Muroga,et al. Binary Decision Diagrams , 2000, The VLSI Handbook.
[16] I. Wegener. Branching Programs and Binary Deci-sion Diagrams-Theory and Applications , 1987 .
[17] Evelyne Hubert,et al. Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.
[18] ChallengesPaul ZimmermannInria Lorrainezimmermann. Polynomial Factorization , 1996 .
[19] Bernd Sturmfels,et al. Lattice Walks and Primary Decomposition , 1998 .
[20] Pablo A. Parrilo,et al. An efficient tree decomposition method for permanents and mixed discriminants , 2015, ArXiv.
[21] Dongming Wang,et al. Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.
[22] Dongming Wang. Elimination Practice - Software Tools and Applications , 2004 .
[23] Arie M. C. A. Koster,et al. Treewidth computations I. Upper bounds , 2010, Inf. Comput..
[24] S. Rao Kosaraju,et al. Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.
[25] Bernd Sturmfels,et al. Commuting birth-and-death processes. , 2008, 0812.2724.
[26] Blair J R S,et al. Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .
[27] Michael Kalkbrener,et al. A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..
[28] Takayuki Hibi,et al. Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..
[29] Sicun Gao May. Counting Zeros over Finite Fields Using Gröbner Bases , 2011 .
[30] Ingo Wegener,et al. Branching Programs and Binary Decision Diagrams , 1987 .
[31] Thomas Kahle,et al. Decompositions of binomial ideals , 2009, 0906.4873.
[32] Randal E. Bryant,et al. Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.
[33] Pablo A. Parrilo,et al. Exploiting Chordal Structure in Polynomial Ideals: A Gröbner Bases Approach , 2014, SIAM J. Discret. Math..
[34] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[35] B. Sturmfels. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[36] Erich Kaltofen,et al. Polynomial Factorization 1987-1991 , 1992, LATIN.
[37] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[38] Dinesh Manocha,et al. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[39] Daniel Lazard,et al. Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..
[40] Michael B. Monagan,et al. Sparse polynomial division using a heap , 2011, J. Symb. Comput..