Chordal networks of polynomial ideals

We introduce a novel representation of structured polynomial ideals, which we refer to as chordal networks. The sparsity structure of a polynomial system is often described by a graph that captures the interactions among the variables. Chordal networks provide a computationally convenient decomposition into simpler (triangular) polynomial sets, while preserving the underlying graphical structure. We show that many interesting families of polynomial ideals admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Chordal networks can be computed for arbitrary polynomial systems using a refinement of the chordal elimination algorithm from [D. Cifuentes and P. A. Parrilo, SIAM J. Discrete Math., 30 (2016), pp. 1534--1570]. Furthermore, they can be effectively used to obtain several properties of the variety, such as its dimension, cardinality, and equidimensional components, as well as an efficient probabilistic tes...

[1]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[2]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[3]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[4]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[5]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[6]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[7]  Jesús A. De Loera,et al.  Hilbert's nullstellensatz and an algorithm for proving combinatorial infeasibility , 2008, ISSAC '08.

[8]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[9]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[10]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[11]  Marc Moreno Maza,et al.  The RegularChains library in MAPLE , 2005, SIGS.

[12]  Gian-Carlo Rota,et al.  Mathematical Essays in honor of Gian-Carlo Rota , 1998 .

[13]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[14]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[15]  Saburo Muroga,et al.  Binary Decision Diagrams , 2000, The VLSI Handbook.

[16]  I. Wegener Branching Programs and Binary Deci-sion Diagrams-Theory and Applications , 1987 .

[17]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[18]  ChallengesPaul ZimmermannInria Lorrainezimmermann Polynomial Factorization , 1996 .

[19]  Bernd Sturmfels,et al.  Lattice Walks and Primary Decomposition , 1998 .

[20]  Pablo A. Parrilo,et al.  An efficient tree decomposition method for permanents and mixed discriminants , 2015, ArXiv.

[21]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[22]  Dongming Wang Elimination Practice - Software Tools and Applications , 2004 .

[23]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[24]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[25]  Bernd Sturmfels,et al.  Commuting birth-and-death processes. , 2008, 0812.2724.

[26]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[27]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[28]  Takayuki Hibi,et al.  Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..

[29]  Sicun Gao May Counting Zeros over Finite Fields Using Gröbner Bases , 2011 .

[30]  Ingo Wegener,et al.  Branching Programs and Binary Decision Diagrams , 1987 .

[31]  Thomas Kahle,et al.  Decompositions of binomial ideals , 2009, 0906.4873.

[32]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[33]  Pablo A. Parrilo,et al.  Exploiting Chordal Structure in Polynomial Ideals: A Gröbner Bases Approach , 2014, SIAM J. Discret. Math..

[34]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[35]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[36]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[37]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[38]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[39]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[40]  Michael B. Monagan,et al.  Sparse polynomial division using a heap , 2011, J. Symb. Comput..