Thermophoresis: microfluidics characterization and separation

We show that thermophoresis, i.e., mass flow driven by thermal gradients, can be used to drive particle motion in microfluidic devices exploiting suitable temperature control strategies. Due to its high sensitivity to particle/solvent interfacial properties, this method presents several advantages in terms of selectivity compared to standard particle manipulation techniques. Moreover, we show that selective driving of particles to the cold or to the hot side can be achieved by adding specific electrolytes and exploiting the additional thermoelectric effect stemming from their differential thermal responsiveness.

[1]  Roberto Piazza,et al.  A portable device for temperature control along microchannels. , 2010, Lab on a chip.

[2]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[3]  C S Effenhauser,et al.  Integrated chip‐based capillary electrophoresis , 1997, Electrophoresis.

[4]  D. Janasek,et al.  Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels. , 2009, Journal of chromatography. A.

[5]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[6]  R. Davalos,et al.  An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. , 2005, Journal of microbiological methods.

[7]  A. Bruno Frazier,et al.  Continuous magnetophoretic separation of blood cells in microdevice format , 2004 .

[8]  A. J. Pang,et al.  Bidirectional Field-Flow Particle Separation Method in a Dielectrophoretic Chipwith 3D Electrodes , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[9]  Ruey-Jen Yang,et al.  Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels , 2007 .

[10]  Howard A Stone,et al.  Shear-induced diffusion of platelike particles in microchannels. , 2008, Physical review letters.

[11]  A. J. Pang,et al.  Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation , 2007 .

[12]  R. Rusconi,et al.  The “macromolecular tourist": Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions , 2006, The European physical journal. E, Soft matter.

[13]  Michael P Hughes,et al.  Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems , 2002, Electrophoresis.

[14]  E. Cummings,et al.  Insulator‐based dielectrophoresis for the selective concentration and separation of live bacteria in water , 2004, Electrophoresis.

[15]  R. Piazza,et al.  Thermophoresis and thermoelectricity in surfactant solutions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[16]  Yiqiong Zhao,et al.  Optical gradient flow focusing. , 2007, Optics express.

[17]  P. Gascoyne,et al.  Particle separation by dielectrophoresis , 2002, Electrophoresis.

[18]  Roberto Piazza,et al.  Thermophoresis in colloidal suspensions , 2008 .

[19]  Roberto Piazza,et al.  Thermophoresis in protein solutions , 2003 .

[20]  George M. Whitesides,et al.  Fabrication of magnetic microfiltration systems using soft lithography , 2002 .

[21]  Roberto Piazza,et al.  Does thermophoretic mobility depend on particle size? , 2008, Physical review letters.

[22]  C. Mou,et al.  Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory , 1989 .

[23]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[24]  J. Janča,et al.  Micro-thermal field-flow fractionation: new high-performance method for particle size distribution analysis. , 2003, Journal of colloid and interface science.

[25]  T. Huang,et al.  Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[26]  Jerry Westerweel,et al.  Thermophoretic Separation in Microfluidics , 2006 .

[27]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[28]  A. Würger Transport in charged colloids driven by thermoelectricity. , 2008, Physical review letters.

[29]  A. Ajdari,et al.  Boosting migration of large particles by solute contrasts. , 2008, Nature materials.