Pattern Recognition Learning Applied to Stereovision Matching

This paper presents an approach to the local stereovision matching problem by developing a statistical pattern recognition learning strategy. We use edge segments as features with several attributes. We have verified that the differences in attributes for the true matches cluster in a cloud around a center. The correspondence is established on the basis of the minimum squared Mahalanobis distance between the difference of the attributes for a current pair of features and the cluster center (similarity constraint). We introduce a learning strategy based on a maximum likelihood estimates method to get the best cluster center. A comparative analysis against a classical approach using the squared Euclidean distance (i.e. without learning) is illustrated.

[1]  Jake K. Aggarwal,et al.  Positioning three-dimensional objects using stereo images , 1987, IEEE J. Robotics Autom..

[2]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Anil K. Jain,et al.  Analysis and Interpretation of Range Images , 1989, Springer Series in Perception Engineering.

[4]  Eric Paul Krotkov,et al.  Active Computer Vision by Cooperative Focus and Stereo , 1989, Springer Series in Perception Engineering.

[5]  Hans G. C. Tråvén,et al.  A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions , 1991, IEEE Trans. Neural Networks.

[6]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[7]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[8]  Shuichi Tanaka,et al.  A rule-based approach to binocular stereopsis , 1988 .

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  T. Ozanian Approaches for Stereo Matching , 1995 .

[11]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[12]  Jia-Guu Leu,et al.  Detecting the dislocations in metal crystals from microscopic images , 1990, Pattern Recognit..

[13]  Gonzalo Pajares Martinsanz Estrategia de solución al problema de la correspondencia en visión estereoscópica por la jerarquía metodológica y la integración de criterios , 1995 .

[14]  R. J. Schalkoff,et al.  ANN Implementation of Stereo Vision Using a Multi-Layer Feedback Architecture , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[15]  Ieee Robotics,et al.  IEEE journal of robotics and automation , 1985 .