Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows
暂无分享,去创建一个
Rupert Klein | N. Botta | R. Klein | N. Botta | K. Geratz | T. Schneider | T. Schneider | K. J. Geratz
[1] B. V. Leer,et al. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .
[2] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[3] R. Klein,et al. A capturing - tracking hybrid scheme for deflagration discontinuities , 1997 .
[4] Hester Bijl,et al. A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .
[5] Cécile Viozat,et al. Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .
[6] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .
[7] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[8] J. Peraire,et al. Compressible and incompressible flow; an algorithm for all seasons , 1990 .
[9] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[10] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[11] C. Schulz-Rinne,et al. The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .
[12] E. Puckett,et al. A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .
[13] B. V. Leer,et al. Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .
[14] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[15] John B. Bell,et al. An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .
[16] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[17] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[18] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[19] S. Patankar,et al. Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations , 1988 .
[20] J. Bell,et al. A Second-Order Projection Method for Variable- Density Flows* , 1992 .
[21] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[22] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[23] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[24] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[25] Jörn Lothar Sesterhenn,et al. Zur numerischen Berechnung kompressibler Strömungen bei kleinen Mach-Zahlen , 1995 .
[26] Stuart E. Rogers,et al. Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .
[27] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[28] Jörn Sesterhenn,et al. Flux-vector splitting for compressible low Mach number flow , 1993 .
[29] M. Perić,et al. FINITE VOLUME METHOD FOR PREDICTION OF FLUID FLOW IN ARBITRARILY SHAPED DOMAINS WITH MOVING BOUNDARIES , 1990 .
[30] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[31] S. Schochet. Asymptotics for symmetric hyperbolic systems with a large parameter , 1988 .
[32] Charles-Henri Bruneau,et al. An efficient scheme for solving steady incompressible Navier-Stokes equations , 1990 .
[33] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .