A trace ratio maximization approach to multiple kernel-based dimensionality reduction

[1]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[3]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[4]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[5]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[6]  I. Jolliffe Principal Component Analysis , 2002 .

[7]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[8]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[9]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[10]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[11]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[13]  Stephen P. Boyd,et al.  Optimal kernel selection in Kernel Fisher discriminant analysis , 2006, ICML.

[14]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[15]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Dong Xu,et al.  Trace Ratio vs. Ratio Trace for Dimensionality Reduction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Jieping Ye,et al.  Multi-class Discriminant Kernel Learning via Convex Programming , 2008, J. Mach. Learn. Res..

[18]  Feiping Nie,et al.  Trace Ratio Criterion for Feature Selection , 2008, AAAI.

[19]  Mehryar Mohri,et al.  Learning Non-Linear Combinations of Kernels , 2009, NIPS.

[20]  Yoonsuck Choe,et al.  Manifold Alpha-Integration , 2010, PRICAI.

[21]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[22]  Chiou-Shann Fuh,et al.  Multiple Kernel Learning for Dimensionality Reduction , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Mohammed Bellalij,et al.  The Trace Ratio Optimization Problem , 2012, SIAM Rev..