A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update

This paper proposes a new implementation for the delta generalized labeled multi-Bernoulli (δ-GLMB) filter by combining prediction and update into a single step. In contrast to the original implementation which requires different truncation procedures for each component in the prediction and update, the joint strategy involves only one truncation per component in the filtering density, thus drastically reduces the number of computations. Performance comparison with the original implementation is presented through numerical studies.

[1]  Ba-Ngu Vo,et al.  Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering , 2013, IEEE Transactions on Signal Processing.

[2]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[3]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[5]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[6]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[7]  Ba-Ngu Vo,et al.  SLAM Gets a PHD: New Concepts in Map Estimation , 2014, IEEE Robotics & Automation Magazine.

[8]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Ba-Ngu Vo,et al.  A Generalized Labeled Multi-Bernoulli Filter Implementation using Gibbs Sampling , 2015, ArXiv.

[10]  Murat Üney,et al.  Distributed Fusion of PHD Filters Via Exponential Mixture Densities , 2013, IEEE Journal of Selected Topics in Signal Processing.

[11]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[12]  Daniel E. Clark,et al.  Bayesian multiple target tracking in forward scan sonar images using the PHD filter , 2005 .

[13]  Ba-Ngu Vo,et al.  Multi-Target Tracking With Time-Varying Clutter Rate and Detection Profile: Application to Time-Lapse Cell Microscopy Sequences , 2015, IEEE Transactions on Medical Imaging.

[14]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[16]  Joaquim Salvi,et al.  SLAM With Dynamic Targets via Single-Cluster PHD Filtering , 2013, IEEE Journal of Selected Topics in Signal Processing.

[17]  Ba-Ngu Vo,et al.  A Note on the Reward Function for PHD Filters with Sensor Control , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Alireza Bab-Hadiashar,et al.  Robust Multi-Bernoulli Sensor Selection for Multi-Target Tracking in Sensor Networks , 2013, IEEE Signal Processing Letters.

[19]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[20]  Vikram Krishnamurthy,et al.  Integrated Tracking, Classification, and Sensor Management , 2013 .

[21]  Y. Bar-Shalom Tracking and data association , 1988 .

[22]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[23]  Aaron D. Lanterman,et al.  Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar , 2008 .

[24]  A. Farina,et al.  Traffic intensity estimation via PHD filtering , 2008, 2008 European Radar Conference.

[25]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[26]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[27]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[28]  Ba-Tuong Vo,et al.  Sensor management for multi-target tracking via multi-Bernoulli filtering , 2013, Autom..

[29]  Aaron D. Lanterman,et al.  Probability hypothesis density-based multitarget tracking with bistatic range and Doppler observations , 2005 .

[30]  Giorgio Battistelli,et al.  Consensus CPHD Filter for Distributed Multitarget Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[31]  Klaus C. J. Dietmayer,et al.  Road user tracking at intersections using a multiple-model PHD filter , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[32]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[33]  Ba-Ngu Vo,et al.  Sensor control for multi-object state-space estimation using random finite sets , 2010, Autom..