ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-ribosyl-L-arginine

Summary Protein ADP-ribosylation is a highly dynamic post-translational modification. The rapid turnover is achieved, among others, by ADP-(ribosyl)hydrolases (ARHs), an ancient family of enzymes that reverses this modification. Recently ARHs came into focus due to their role as regulators of cellular stresses and tumor suppressors. Here we present a comprehensive structural analysis of the enzymatically active family members ARH1 and ARH3. These two enzymes have very distinct substrate requirements. Our data show that binding of the adenosine ribose moiety is highly diverged between the two enzymes, whereas the active sites harboring the distal ribose closely resemble each other. Despite this apparent similarity, we elucidate the structural basis for the selective inhibition of ARH3 by the ADP-ribose analogues ADP-HPD and arginine-ADP-ribose. Together, our biochemical and structural work provides important insights into the mode of enzyme-ligand interaction, helps to understand differences in their catalytic behavior, and provides useful tools for targeted drug design.

[1]  I. Ahel,et al.  Monitoring Poly(ADP-ribosyl)glycohydrolase Activity with a Continuous Fluorescent Substrate. , 2018, Cell chemical biology.

[2]  P. Striano,et al.  Biallelic Mutations in ADPRHL2, Encoding ADP-Ribosylhydrolase 3, Lead to a Degenerative Pediatric Stress-Induced Epileptic Ataxia Syndrome. , 2018, American journal of human genetics.

[3]  Xiaochun Yu,et al.  Structure–function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation , 2018, The Journal of Biological Chemistry.

[4]  D. Filippov,et al.  Synthetic α- and β-Ser-ADP-ribosylated Peptides Reveal α-Ser-ADPr as the Native Epimer , 2018, Organic letters.

[5]  J. Moss,et al.  Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition , 2018, The Journal of Biological Chemistry.

[6]  I. Matic,et al.  Serine is the major residue for ADP-ribosylation upon DNA damage , 2018, eLife.

[7]  Michael S. Cohen,et al.  Insights into the biogenesis, function, and regulation of ADP-ribosylation. , 2018, Nature chemical biology.

[8]  Christian Roth,et al.  CCP4i2: the new graphical user interface to the CCP4 program suite , 2018, Acta crystallographica. Section D, Structural biology.

[9]  I. Matic,et al.  Specificity of reversible ADP-ribosylation and regulation of cellular processes , 2018, Critical reviews in biochemistry and molecular biology.

[10]  S. Perlman,et al.  Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis , 2017, Trends in Microbiology.

[11]  I. Ahel,et al.  Reversible mono‐ADP‐ribosylation of DNA breaks , 2017, The FEBS journal.

[12]  I. Matic,et al.  Serine ADP-ribosylation reversal by the hydrolase ARH3 , 2017, eLife.

[13]  I. Ahel,et al.  ADP‐ribosylation: new facets of an ancient modification , 2017, The FEBS journal.

[14]  H. Bryant,et al.  Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase , 2017, DNA repair.

[15]  I. Matic,et al.  Serine ADP-Ribosylation Depends on HPF1 , 2017, Molecular cell.

[16]  Przemyslaw J. Porebski,et al.  CheckMyMetal: a macromolecular metal-binding validation tool , 2017, Acta crystallographica. Section D, Structural biology.

[17]  Paul D. Adams,et al.  Polder maps: improving OMIT maps by excluding bulk solvent , 2017, Acta crystallographica. Section D, Structural biology.

[18]  Ziying Liu,et al.  PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes , 2017, Genes & development.

[19]  Bohdan Waszkowycz,et al.  First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. , 2016, ACS chemical biology.

[20]  W. Taylor,et al.  The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly , 2016, Developmental biology.

[21]  O. Nureki,et al.  ENPP1 processes protein ADP‐ribosylation in vitro , 2016, The FEBS journal.

[22]  I. Matic,et al.  Serine is a new target residue for endogenous ADP-ribosylation on histones , 2016, Nature chemical biology.

[23]  I. Ahel,et al.  Macrodomains: Structure, Function, Evolution, and Catalytic Activities. , 2016, Annual review of biochemistry.

[24]  I. Ahel,et al.  HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity , 2016, Molecular cell.

[25]  I. Matic,et al.  Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens , 2015, Molecular cell.

[26]  G. Superti-Furga,et al.  A Modular Synthesis of Modified Phosphoanhydrides. , 2015, Chemistry.

[27]  I. Ahel,et al.  Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. , 2015, Molecular cell.

[28]  V. M. Sung,et al.  Mechanistic overview of ADP-ribosylation reactions. , 2015, Biochimie.

[29]  I. Ahel,et al.  Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase. , 2015, Journal of the American Chemical Society.

[30]  Jennifer A. Littlechild,et al.  Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry , 2014, Journal of visualized experiments : JoVE.

[31]  I. Matic,et al.  Family-wide analysis of poly(ADP-ribose) polymerase activity , 2014, Nature Communications.

[32]  G. Sheldrick,et al.  Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server , 2013, Nature Protocols.

[33]  J. Moss,et al.  ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress , 2013, Proceedings of the National Academy of Sciences.

[34]  J. Warwicker,et al.  Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities , 2013, Nature Communications.

[35]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[36]  I. Matic,et al.  Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease , 2013, The EMBO journal.

[37]  Martin Zacharias,et al.  A family of macrodomain proteins reverses cellular mono-ADP-ribosylation , 2013, Nature Structural &Molecular Biology.

[38]  A. Caflisch,et al.  Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases , 2013, Nature Structural &Molecular Biology.

[39]  J. Nissink,et al.  Structures of the Human Poly (ADP-Ribose) Glycohydrolase Catalytic Domain Confirm Catalytic Mechanism and Explain Inhibition by ADP-HPD Derivatives , 2012, PloS one.

[40]  J. Moss,et al.  ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose)* , 2012, The Journal of Biological Chemistry.

[41]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[42]  M. Dunstan,et al.  The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase , 2011, Nature.

[43]  J. Moss,et al.  ADP-ribosylarginine hydrolase regulates cell proliferation and tumorigenesis. , 2011, Cancer research.

[44]  F. Koch-Nolte,et al.  ADP-ribosylation of arginine , 2010, Amino Acids.

[45]  Bernhard Lüscher,et al.  Toward a unified nomenclature for mammalian ADP-ribosyltransferases. , 2010, Trends in biochemical sciences.

[46]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[47]  M. Högbom,et al.  Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG , 2009, Proceedings of the National Academy of Sciences.

[48]  Charles Simon Bond,et al.  ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. , 2009, Acta crystallographica. Section D, Biological crystallography.

[49]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[50]  Carmay Lim,et al.  Mononuclear versus binuclear metal-binding sites: metal-binding affinity and selectivity from PDB survey and DFT/CDM calculations. , 2008, Journal of the American Chemical Society.

[51]  C. Mueller-Dieckmann,et al.  Structure of mouse ADP-ribosylhydrolase 3 (mARH3) , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[52]  Leszek Rychlewski,et al.  XtalPred: a web server for prediction of protein crystallizability , 2007, Bioinform..

[53]  J. Moss,et al.  Enhanced Sensitivity to Cholera Toxin in ADP-Ribosylarginine Hydrolase-Deficient Mice , 2007, Molecular and Cellular Biology.

[54]  J. Moss,et al.  The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases , 2006, Proceedings of the National Academy of Sciences.

[55]  C. Mueller-Dieckmann,et al.  The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation , 2006, Proceedings of the National Academy of Sciences.

[56]  C. Mueller-Dieckmann,et al.  Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of human ARH3, the first eukaryotic protein-ADP-ribosylhydrolase. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[57]  J. Moss,et al.  Identification and Characterization of a Mammalian 39-kDa Poly(ADP-ribose) Glycohydrolase* , 2006, Journal of Biological Chemistry.

[58]  Hyuntae Kim,et al.  SAR analysis of adenosine diphosphate (hydroxymethyl)pyrrolidinediol inhibition of poly(ADP-ribose) glycohydrolase. , 2003, Journal of medicinal chemistry.

[59]  Daniela Corda,et al.  Functional aspects of protein mono‐ADP‐ribosylation , 2003, The EMBO journal.

[60]  G. Schulz,et al.  Expression, purification, crystallization and preliminary X-ray analysis of rat ecto-ADP-ribosyltransferase 2 (ART2.2). , 2002, Acta crystallographica. Section D, Biological crystallography.

[61]  G. Poirier,et al.  Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. , 1999, The Biochemical journal.

[62]  E. Jacobson,et al.  Isolation and Characterization of the cDNA Encoding Bovine Poly(ADP-ribose) Glycohydrolase* , 1997, The Journal of Biological Chemistry.

[63]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[64]  Geoffrey J. Barton,et al.  Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation , 1993, Comput. Appl. Biosci..

[65]  K. Iida,et al.  Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. , 1993, The Journal of biological chemistry.

[66]  M. Miwa,et al.  Preferential degradation of protein-bound (ADP-ribose)n by nuclear poly(ADP-ribose) glycohydrolase from human placenta. , 1993, The Journal of biological chemistry.

[67]  J. Moss,et al.  Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. , 1988, Biochemistry.

[68]  O. Hayaishi,et al.  Purification and characterization of poly(ADP-ribose) glycohydrolase. Different modes of action on large and small poly(ADP-ribose). , 1986, The Journal of biological chemistry.

[69]  N. Oppenheimer,et al.  Amino acid specific ADP-ribosylation: substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. , 1986, Biochemistry.

[70]  J. Pascal,et al.  Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. , 2011, Methods in molecular biology.

[71]  Sequence analysis Advance Access publication April 28, 2010 Parallelization of the MAFFT multiple sequence alignment , 2010 .

[72]  T. Dawson,et al.  Parthanatos, a messenger of death. , 2009, Frontiers in bioscience.

[73]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .