Port-Hamiltonian Modeling of Spatial Compliant Contacts

Abstract In this paper the geometrical description of viscoelastic contacts is described from an energy consistent point of view. The proposed model is on one side simple enough to be used in real time applications and on the other captures the major features of a complete spatial geometric unisotropical contact

[1]  Stefano Stramigioli,et al.  Screw bondgraph contact dynamics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Vijay Kumar,et al.  Affine connections for the Cartesian stiffness matrix , 1997, Proceedings of International Conference on Robotics and Automation.

[3]  Stefano Stramigioli,et al.  Modeling the kinematics and dynamics of compliant contact , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[5]  Stefano Stramigioli,et al.  Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .

[6]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[7]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[8]  David J. Montana,et al.  The kinematics of contact with compliance , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[9]  Mark R. Cutkosky,et al.  Friction, Stability and the Design of Robotic Fingers , 1986 .

[10]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[12]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[13]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[14]  David E. Orin,et al.  A compliant contact model with nonlinear damping for simulation of robotic systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[15]  M. Dalsmo,et al.  Mathematical structures in the network representation of energy-conserving physical systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.